Turning gold into 'junk': transposable elements utilize central proteins of cellular networks
The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2013-03, Vol.41 (5), p.3190-3200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3200 |
---|---|
container_issue | 5 |
container_start_page | 3190 |
container_title | Nucleic acids research |
container_volume | 41 |
creator | Abrusán, György Szilágyi, András Zhang, Yang Papp, Balázs |
description | The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts. |
doi_str_mv | 10.1093/nar/gkt011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1317405304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</originalsourceid><addsrcrecordid>eNpVkVtLxDAQhYMoul5e_AGSN0Wom1vb1AdBxBsIvqyPErLdaY2bJmuSKvrr7bKr6NMwMx9nznAQOqTkjJKKj50O43aeCKUbaER5wTJRFWwTjQgneUaJkDtoN8ZXQqigudhGO4xzQQmXI_Q86YMzrsWttzNsXPL4-LV38-NznIJ2ceGjnlrAYKEDlyLuk7HmC3A9dEFbvAg-gXER-2aYWdtbHbCD9OHDPO6jrUbbCAfruoeebq4nV3fZw-Pt_dXlQ1bzUqasbrgsiW6EHByCrGgOGkRRVlXDaspyImvBmkoyRgogBZ1SkDUwmFasrKWWfA9drHQX_bSD2dqbWgTT6fCpvDbq_8aZF9X6d8XzqizKchA4WQsE_9ZDTKozcfmOduD7qCinpSA5J2JAT1doHXyMAZrfM5SoZR5qyEOt8hjgo7_GftGfAPg33siJTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317405304</pqid></control><display><type>article</type><title>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Abrusán, György ; Szilágyi, András ; Zhang, Yang ; Papp, Balázs</creator><creatorcontrib>Abrusán, György ; Szilágyi, András ; Zhang, Yang ; Papp, Balázs</creatorcontrib><description>The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt011</identifier><identifier>PMID: 23341038</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; DNA Transposable Elements - genetics ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Evolution, Molecular ; Gene Regulatory Networks ; Genome, Fungal ; Genome, Insect ; Genomics ; Likelihood Functions ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Phylogeny ; Protein Structure, Tertiary ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics</subject><ispartof>Nucleic acids research, 2013-03, Vol.41 (5), p.3190-3200</ispartof><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</citedby><cites>FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597677/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597677/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23341038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrusán, György</creatorcontrib><creatorcontrib>Szilágyi, András</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><title>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Fungal</subject><subject>Genome, Insect</subject><subject>Genomics</subject><subject>Likelihood Functions</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Monte Carlo Method</subject><subject>Phylogeny</subject><subject>Protein Structure, Tertiary</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtLxDAQhYMoul5e_AGSN0Wom1vb1AdBxBsIvqyPErLdaY2bJmuSKvrr7bKr6NMwMx9nznAQOqTkjJKKj50O43aeCKUbaER5wTJRFWwTjQgneUaJkDtoN8ZXQqigudhGO4xzQQmXI_Q86YMzrsWttzNsXPL4-LV38-NznIJ2ceGjnlrAYKEDlyLuk7HmC3A9dEFbvAg-gXER-2aYWdtbHbCD9OHDPO6jrUbbCAfruoeebq4nV3fZw-Pt_dXlQ1bzUqasbrgsiW6EHByCrGgOGkRRVlXDaspyImvBmkoyRgogBZ1SkDUwmFasrKWWfA9drHQX_bSD2dqbWgTT6fCpvDbq_8aZF9X6d8XzqizKchA4WQsE_9ZDTKozcfmOduD7qCinpSA5J2JAT1doHXyMAZrfM5SoZR5qyEOt8hjgo7_GftGfAPg33siJTg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Abrusán, György</creator><creator>Szilágyi, András</creator><creator>Zhang, Yang</creator><creator>Papp, Balázs</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</title><author>Abrusán, György ; Szilágyi, András ; Zhang, Yang ; Papp, Balázs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Fungal</topic><topic>Genome, Insect</topic><topic>Genomics</topic><topic>Likelihood Functions</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Monte Carlo Method</topic><topic>Phylogeny</topic><topic>Protein Structure, Tertiary</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrusán, György</creatorcontrib><creatorcontrib>Szilágyi, András</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrusán, György</au><au>Szilágyi, András</au><au>Zhang, Yang</au><au>Papp, Balázs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>3190</spage><epage>3200</epage><pages>3190-3200</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23341038</pmid><doi>10.1093/nar/gkt011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2013-03, Vol.41 (5), p.3190-3200 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597677 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals DNA Transposable Elements - genetics Drosophila melanogaster - genetics Drosophila Proteins - genetics Evolution, Molecular Gene Regulatory Networks Genome, Fungal Genome, Insect Genomics Likelihood Functions Models, Genetic Models, Molecular Molecular Sequence Data Monte Carlo Method Phylogeny Protein Structure, Tertiary Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics |
title | Turning gold into 'junk': transposable elements utilize central proteins of cellular networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20gold%20into%20'junk':%20transposable%20elements%20utilize%20central%20proteins%20of%20cellular%20networks&rft.jtitle=Nucleic%20acids%20research&rft.au=Abrus%C3%A1n,%20Gy%C3%B6rgy&rft.date=2013-03-01&rft.volume=41&rft.issue=5&rft.spage=3190&rft.epage=3200&rft.pages=3190-3200&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt011&rft_dat=%3Cproquest_pubme%3E1317405304%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317405304&rft_id=info:pmid/23341038&rfr_iscdi=true |