Turning gold into 'junk': transposable elements utilize central proteins of cellular networks

The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2013-03, Vol.41 (5), p.3190-3200
Hauptverfasser: Abrusán, György, Szilágyi, András, Zhang, Yang, Papp, Balázs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3200
container_issue 5
container_start_page 3190
container_title Nucleic acids research
container_volume 41
creator Abrusán, György
Szilágyi, András
Zhang, Yang
Papp, Balázs
description The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.
doi_str_mv 10.1093/nar/gkt011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1317405304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</originalsourceid><addsrcrecordid>eNpVkVtLxDAQhYMoul5e_AGSN0Wom1vb1AdBxBsIvqyPErLdaY2bJmuSKvrr7bKr6NMwMx9nznAQOqTkjJKKj50O43aeCKUbaER5wTJRFWwTjQgneUaJkDtoN8ZXQqigudhGO4xzQQmXI_Q86YMzrsWttzNsXPL4-LV38-NznIJ2ceGjnlrAYKEDlyLuk7HmC3A9dEFbvAg-gXER-2aYWdtbHbCD9OHDPO6jrUbbCAfruoeebq4nV3fZw-Pt_dXlQ1bzUqasbrgsiW6EHByCrGgOGkRRVlXDaspyImvBmkoyRgogBZ1SkDUwmFasrKWWfA9drHQX_bSD2dqbWgTT6fCpvDbq_8aZF9X6d8XzqizKchA4WQsE_9ZDTKozcfmOduD7qCinpSA5J2JAT1doHXyMAZrfM5SoZR5qyEOt8hjgo7_GftGfAPg33siJTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317405304</pqid></control><display><type>article</type><title>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Abrusán, György ; Szilágyi, András ; Zhang, Yang ; Papp, Balázs</creator><creatorcontrib>Abrusán, György ; Szilágyi, András ; Zhang, Yang ; Papp, Balázs</creatorcontrib><description>The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt011</identifier><identifier>PMID: 23341038</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; DNA Transposable Elements - genetics ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Evolution, Molecular ; Gene Regulatory Networks ; Genome, Fungal ; Genome, Insect ; Genomics ; Likelihood Functions ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Phylogeny ; Protein Structure, Tertiary ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics</subject><ispartof>Nucleic acids research, 2013-03, Vol.41 (5), p.3190-3200</ispartof><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</citedby><cites>FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597677/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597677/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23341038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrusán, György</creatorcontrib><creatorcontrib>Szilágyi, András</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><title>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Fungal</subject><subject>Genome, Insect</subject><subject>Genomics</subject><subject>Likelihood Functions</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Monte Carlo Method</subject><subject>Phylogeny</subject><subject>Protein Structure, Tertiary</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtLxDAQhYMoul5e_AGSN0Wom1vb1AdBxBsIvqyPErLdaY2bJmuSKvrr7bKr6NMwMx9nznAQOqTkjJKKj50O43aeCKUbaER5wTJRFWwTjQgneUaJkDtoN8ZXQqigudhGO4xzQQmXI_Q86YMzrsWttzNsXPL4-LV38-NznIJ2ceGjnlrAYKEDlyLuk7HmC3A9dEFbvAg-gXER-2aYWdtbHbCD9OHDPO6jrUbbCAfruoeebq4nV3fZw-Pt_dXlQ1bzUqasbrgsiW6EHByCrGgOGkRRVlXDaspyImvBmkoyRgogBZ1SkDUwmFasrKWWfA9drHQX_bSD2dqbWgTT6fCpvDbq_8aZF9X6d8XzqizKchA4WQsE_9ZDTKozcfmOduD7qCinpSA5J2JAT1doHXyMAZrfM5SoZR5qyEOt8hjgo7_GftGfAPg33siJTg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Abrusán, György</creator><creator>Szilágyi, András</creator><creator>Zhang, Yang</creator><creator>Papp, Balázs</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</title><author>Abrusán, György ; Szilágyi, András ; Zhang, Yang ; Papp, Balázs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-cf3870af48014e8915eae46799f2c12508c42f982206e061b1e8ce2eb927c8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Fungal</topic><topic>Genome, Insect</topic><topic>Genomics</topic><topic>Likelihood Functions</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Monte Carlo Method</topic><topic>Phylogeny</topic><topic>Protein Structure, Tertiary</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrusán, György</creatorcontrib><creatorcontrib>Szilágyi, András</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrusán, György</au><au>Szilágyi, András</au><au>Zhang, Yang</au><au>Papp, Balázs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning gold into 'junk': transposable elements utilize central proteins of cellular networks</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>3190</spage><epage>3200</epage><pages>3190-3200</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23341038</pmid><doi>10.1093/nar/gkt011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2013-03, Vol.41 (5), p.3190-3200
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597677
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
DNA Transposable Elements - genetics
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Evolution, Molecular
Gene Regulatory Networks
Genome, Fungal
Genome, Insect
Genomics
Likelihood Functions
Models, Genetic
Models, Molecular
Molecular Sequence Data
Monte Carlo Method
Phylogeny
Protein Structure, Tertiary
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
title Turning gold into 'junk': transposable elements utilize central proteins of cellular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20gold%20into%20'junk':%20transposable%20elements%20utilize%20central%20proteins%20of%20cellular%20networks&rft.jtitle=Nucleic%20acids%20research&rft.au=Abrus%C3%A1n,%20Gy%C3%B6rgy&rft.date=2013-03-01&rft.volume=41&rft.issue=5&rft.spage=3190&rft.epage=3200&rft.pages=3190-3200&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt011&rft_dat=%3Cproquest_pubme%3E1317405304%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317405304&rft_id=info:pmid/23341038&rfr_iscdi=true