Acetylation-Dependent Regulation of Skp2 Function
Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which i...
Gespeichert in:
Veröffentlicht in: | Cell 2012-07, Vol.150 (1), p.179-193 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 179 |
container_title | Cell |
container_volume | 150 |
creator | Inuzuka, Hiroyuki Gao, Daming Finley, Lydia W.S. Yang, Wen Wan, Lixin Fukushima, Hidefumi Chin, Y. Rebecca Zhai, Bo Shaik, Shavali Lau, Alan W. Wang, Zhiwei Gygi, Steven P. Nakayama, Keiko Teruya-Feldstein, Julie Toker, Alex Haigis, Marcia C. Pandolfi, Pier Paolo Wei, Wenyi |
description | Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
[Display omitted]
► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation
Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis. |
doi_str_mv | 10.1016/j.cell.2012.05.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3595190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412007519</els_id><sourcerecordid>2000013387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpaTZp_0APzR5zsTOSLEuGUghp0gYChaY5C1kab7XxWlvJDuTfV8ZpSC7tSTD65vHmPUI-UCgp0Pp0W1rs-5IBZSWIErh6RVYUGllUVLLXZAXQsELVsjoghyltAUAJId6SA8akBEabFaFnFseH3ow-DMUX3OPgcBjXP3AzLcN16NY3d3u2vpwGOw_ekTed6RO-f3yPyO3lxc_zb8X1969X52fXhRWUjYXoOs5bp5yogBpQqmIKW0TrnJLW2bat27oxhtdgbCMbU3GBYFtRMXSUSX5EPi-6-6ndobPZVjS93ke_M_FBB-P1y5_B_9KbcK-5aARtIAucPArE8HvCNOqdT3NiZsAwJc1yHkA5V_K_KAWW7YGgNKNsQW0MKUXsnhxR0HMteqvnTT3XokHoXEte-vj8lqeVvz1k4HgBOhO02USf9O1NVqhni7WqRCY-LQTmzO89Rp2sx8Gi8xHtqF3w_3LwB-vsp6U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024350511</pqid></control><display><type>article</type><title>Acetylation-Dependent Regulation of Skp2 Function</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Inuzuka, Hiroyuki ; Gao, Daming ; Finley, Lydia W.S. ; Yang, Wen ; Wan, Lixin ; Fukushima, Hidefumi ; Chin, Y. Rebecca ; Zhai, Bo ; Shaik, Shavali ; Lau, Alan W. ; Wang, Zhiwei ; Gygi, Steven P. ; Nakayama, Keiko ; Teruya-Feldstein, Julie ; Toker, Alex ; Haigis, Marcia C. ; Pandolfi, Pier Paolo ; Wei, Wenyi</creator><creatorcontrib>Inuzuka, Hiroyuki ; Gao, Daming ; Finley, Lydia W.S. ; Yang, Wen ; Wan, Lixin ; Fukushima, Hidefumi ; Chin, Y. Rebecca ; Zhai, Bo ; Shaik, Shavali ; Lau, Alan W. ; Wang, Zhiwei ; Gygi, Steven P. ; Nakayama, Keiko ; Teruya-Feldstein, Julie ; Toker, Alex ; Haigis, Marcia C. ; Pandolfi, Pier Paolo ; Wei, Wenyi</creatorcontrib><description>Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
[Display omitted]
► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation
Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.05.038</identifier><identifier>PMID: 22770219</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylation ; Amino Acid Sequence ; Animals ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; cadherins ; Cadherins - metabolism ; carcinogenesis ; Casein Kinase I - metabolism ; Cell Line, Tumor ; Cell Movement ; cell proliferation ; Cytoplasm - metabolism ; Disease Models, Animal ; Humans ; Lysine - metabolism ; Male ; Mice ; Molecular Sequence Data ; mutants ; nuclear localization signals ; p300-CBP Transcription Factors - metabolism ; prostatic neoplasms ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Protein Processing, Post-Translational ; Protein Sorting Signals ; proteolysis ; S-Phase Kinase-Associated Proteins - chemistry ; S-Phase Kinase-Associated Proteins - genetics ; S-Phase Kinase-Associated Proteins - metabolism ; Sequence Alignment ; Ubiquitination</subject><ispartof>Cell, 2012-07, Vol.150 (1), p.179-193</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</citedby><cites>FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412007519$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22770219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inuzuka, Hiroyuki</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><creatorcontrib>Finley, Lydia W.S.</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wan, Lixin</creatorcontrib><creatorcontrib>Fukushima, Hidefumi</creatorcontrib><creatorcontrib>Chin, Y. Rebecca</creatorcontrib><creatorcontrib>Zhai, Bo</creatorcontrib><creatorcontrib>Shaik, Shavali</creatorcontrib><creatorcontrib>Lau, Alan W.</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><creatorcontrib>Nakayama, Keiko</creatorcontrib><creatorcontrib>Teruya-Feldstein, Julie</creatorcontrib><creatorcontrib>Toker, Alex</creatorcontrib><creatorcontrib>Haigis, Marcia C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><title>Acetylation-Dependent Regulation of Skp2 Function</title><title>Cell</title><addtitle>Cell</addtitle><description>Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
[Display omitted]
► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation
Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis.</description><subject>Acetylation</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>cadherins</subject><subject>Cadherins - metabolism</subject><subject>carcinogenesis</subject><subject>Casein Kinase I - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>cell proliferation</subject><subject>Cytoplasm - metabolism</subject><subject>Disease Models, Animal</subject><subject>Humans</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>nuclear localization signals</subject><subject>p300-CBP Transcription Factors - metabolism</subject><subject>prostatic neoplasms</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Sorting Signals</subject><subject>proteolysis</subject><subject>S-Phase Kinase-Associated Proteins - chemistry</subject><subject>S-Phase Kinase-Associated Proteins - genetics</subject><subject>S-Phase Kinase-Associated Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Ubiquitination</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQhUVpaTZp_0APzR5zsTOSLEuGUghp0gYChaY5C1kab7XxWlvJDuTfV8ZpSC7tSTD65vHmPUI-UCgp0Pp0W1rs-5IBZSWIErh6RVYUGllUVLLXZAXQsELVsjoghyltAUAJId6SA8akBEabFaFnFseH3ow-DMUX3OPgcBjXP3AzLcN16NY3d3u2vpwGOw_ekTed6RO-f3yPyO3lxc_zb8X1969X52fXhRWUjYXoOs5bp5yogBpQqmIKW0TrnJLW2bat27oxhtdgbCMbU3GBYFtRMXSUSX5EPi-6-6ndobPZVjS93ke_M_FBB-P1y5_B_9KbcK-5aARtIAucPArE8HvCNOqdT3NiZsAwJc1yHkA5V_K_KAWW7YGgNKNsQW0MKUXsnhxR0HMteqvnTT3XokHoXEte-vj8lqeVvz1k4HgBOhO02USf9O1NVqhni7WqRCY-LQTmzO89Rp2sx8Gi8xHtqF3w_3LwB-vsp6U</recordid><startdate>20120706</startdate><enddate>20120706</enddate><creator>Inuzuka, Hiroyuki</creator><creator>Gao, Daming</creator><creator>Finley, Lydia W.S.</creator><creator>Yang, Wen</creator><creator>Wan, Lixin</creator><creator>Fukushima, Hidefumi</creator><creator>Chin, Y. Rebecca</creator><creator>Zhai, Bo</creator><creator>Shaik, Shavali</creator><creator>Lau, Alan W.</creator><creator>Wang, Zhiwei</creator><creator>Gygi, Steven P.</creator><creator>Nakayama, Keiko</creator><creator>Teruya-Feldstein, Julie</creator><creator>Toker, Alex</creator><creator>Haigis, Marcia C.</creator><creator>Pandolfi, Pier Paolo</creator><creator>Wei, Wenyi</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120706</creationdate><title>Acetylation-Dependent Regulation of Skp2 Function</title><author>Inuzuka, Hiroyuki ; Gao, Daming ; Finley, Lydia W.S. ; Yang, Wen ; Wan, Lixin ; Fukushima, Hidefumi ; Chin, Y. Rebecca ; Zhai, Bo ; Shaik, Shavali ; Lau, Alan W. ; Wang, Zhiwei ; Gygi, Steven P. ; Nakayama, Keiko ; Teruya-Feldstein, Julie ; Toker, Alex ; Haigis, Marcia C. ; Pandolfi, Pier Paolo ; Wei, Wenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetylation</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>cadherins</topic><topic>Cadherins - metabolism</topic><topic>carcinogenesis</topic><topic>Casein Kinase I - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>cell proliferation</topic><topic>Cytoplasm - metabolism</topic><topic>Disease Models, Animal</topic><topic>Humans</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>nuclear localization signals</topic><topic>p300-CBP Transcription Factors - metabolism</topic><topic>prostatic neoplasms</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Sorting Signals</topic><topic>proteolysis</topic><topic>S-Phase Kinase-Associated Proteins - chemistry</topic><topic>S-Phase Kinase-Associated Proteins - genetics</topic><topic>S-Phase Kinase-Associated Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inuzuka, Hiroyuki</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><creatorcontrib>Finley, Lydia W.S.</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wan, Lixin</creatorcontrib><creatorcontrib>Fukushima, Hidefumi</creatorcontrib><creatorcontrib>Chin, Y. Rebecca</creatorcontrib><creatorcontrib>Zhai, Bo</creatorcontrib><creatorcontrib>Shaik, Shavali</creatorcontrib><creatorcontrib>Lau, Alan W.</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><creatorcontrib>Nakayama, Keiko</creatorcontrib><creatorcontrib>Teruya-Feldstein, Julie</creatorcontrib><creatorcontrib>Toker, Alex</creatorcontrib><creatorcontrib>Haigis, Marcia C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inuzuka, Hiroyuki</au><au>Gao, Daming</au><au>Finley, Lydia W.S.</au><au>Yang, Wen</au><au>Wan, Lixin</au><au>Fukushima, Hidefumi</au><au>Chin, Y. Rebecca</au><au>Zhai, Bo</au><au>Shaik, Shavali</au><au>Lau, Alan W.</au><au>Wang, Zhiwei</au><au>Gygi, Steven P.</au><au>Nakayama, Keiko</au><au>Teruya-Feldstein, Julie</au><au>Toker, Alex</au><au>Haigis, Marcia C.</au><au>Pandolfi, Pier Paolo</au><au>Wei, Wenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylation-Dependent Regulation of Skp2 Function</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-07-06</date><risdate>2012</risdate><volume>150</volume><issue>1</issue><spage>179</spage><epage>193</epage><pages>179-193</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
[Display omitted]
► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation
Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22770219</pmid><doi>10.1016/j.cell.2012.05.038</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2012-07, Vol.150 (1), p.179-193 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3595190 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acetylation Amino Acid Sequence Animals Breast Neoplasms - metabolism Breast Neoplasms - pathology cadherins Cadherins - metabolism carcinogenesis Casein Kinase I - metabolism Cell Line, Tumor Cell Movement cell proliferation Cytoplasm - metabolism Disease Models, Animal Humans Lysine - metabolism Male Mice Molecular Sequence Data mutants nuclear localization signals p300-CBP Transcription Factors - metabolism prostatic neoplasms Prostatic Neoplasms - metabolism Prostatic Neoplasms - pathology Protein Processing, Post-Translational Protein Sorting Signals proteolysis S-Phase Kinase-Associated Proteins - chemistry S-Phase Kinase-Associated Proteins - genetics S-Phase Kinase-Associated Proteins - metabolism Sequence Alignment Ubiquitination |
title | Acetylation-Dependent Regulation of Skp2 Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylation-Dependent%20Regulation%20of%20Skp2%20Function&rft.jtitle=Cell&rft.au=Inuzuka,%20Hiroyuki&rft.date=2012-07-06&rft.volume=150&rft.issue=1&rft.spage=179&rft.epage=193&rft.pages=179-193&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.05.038&rft_dat=%3Cproquest_pubme%3E2000013387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024350511&rft_id=info:pmid/22770219&rft_els_id=S0092867412007519&rfr_iscdi=true |