Acetylation-Dependent Regulation of Skp2 Function

Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2012-07, Vol.150 (1), p.179-193
Hauptverfasser: Inuzuka, Hiroyuki, Gao, Daming, Finley, Lydia W.S., Yang, Wen, Wan, Lixin, Fukushima, Hidefumi, Chin, Y. Rebecca, Zhai, Bo, Shaik, Shavali, Lau, Alan W., Wang, Zhiwei, Gygi, Steven P., Nakayama, Keiko, Teruya-Feldstein, Julie, Toker, Alex, Haigis, Marcia C., Pandolfi, Pier Paolo, Wei, Wenyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 179
container_title Cell
container_volume 150
creator Inuzuka, Hiroyuki
Gao, Daming
Finley, Lydia W.S.
Yang, Wen
Wan, Lixin
Fukushima, Hidefumi
Chin, Y. Rebecca
Zhai, Bo
Shaik, Shavali
Lau, Alan W.
Wang, Zhiwei
Gygi, Steven P.
Nakayama, Keiko
Teruya-Feldstein, Julie
Toker, Alex
Haigis, Marcia C.
Pandolfi, Pier Paolo
Wei, Wenyi
description Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration. [Display omitted] ► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis.
doi_str_mv 10.1016/j.cell.2012.05.038
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3595190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412007519</els_id><sourcerecordid>2000013387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpaTZp_0APzR5zsTOSLEuGUghp0gYChaY5C1kab7XxWlvJDuTfV8ZpSC7tSTD65vHmPUI-UCgp0Pp0W1rs-5IBZSWIErh6RVYUGllUVLLXZAXQsELVsjoghyltAUAJId6SA8akBEabFaFnFseH3ow-DMUX3OPgcBjXP3AzLcN16NY3d3u2vpwGOw_ekTed6RO-f3yPyO3lxc_zb8X1969X52fXhRWUjYXoOs5bp5yogBpQqmIKW0TrnJLW2bat27oxhtdgbCMbU3GBYFtRMXSUSX5EPi-6-6ndobPZVjS93ke_M_FBB-P1y5_B_9KbcK-5aARtIAucPArE8HvCNOqdT3NiZsAwJc1yHkA5V_K_KAWW7YGgNKNsQW0MKUXsnhxR0HMteqvnTT3XokHoXEte-vj8lqeVvz1k4HgBOhO02USf9O1NVqhni7WqRCY-LQTmzO89Rp2sx8Gi8xHtqF3w_3LwB-vsp6U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024350511</pqid></control><display><type>article</type><title>Acetylation-Dependent Regulation of Skp2 Function</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Inuzuka, Hiroyuki ; Gao, Daming ; Finley, Lydia W.S. ; Yang, Wen ; Wan, Lixin ; Fukushima, Hidefumi ; Chin, Y. Rebecca ; Zhai, Bo ; Shaik, Shavali ; Lau, Alan W. ; Wang, Zhiwei ; Gygi, Steven P. ; Nakayama, Keiko ; Teruya-Feldstein, Julie ; Toker, Alex ; Haigis, Marcia C. ; Pandolfi, Pier Paolo ; Wei, Wenyi</creator><creatorcontrib>Inuzuka, Hiroyuki ; Gao, Daming ; Finley, Lydia W.S. ; Yang, Wen ; Wan, Lixin ; Fukushima, Hidefumi ; Chin, Y. Rebecca ; Zhai, Bo ; Shaik, Shavali ; Lau, Alan W. ; Wang, Zhiwei ; Gygi, Steven P. ; Nakayama, Keiko ; Teruya-Feldstein, Julie ; Toker, Alex ; Haigis, Marcia C. ; Pandolfi, Pier Paolo ; Wei, Wenyi</creatorcontrib><description>Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration. [Display omitted] ► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.05.038</identifier><identifier>PMID: 22770219</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylation ; Amino Acid Sequence ; Animals ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; cadherins ; Cadherins - metabolism ; carcinogenesis ; Casein Kinase I - metabolism ; Cell Line, Tumor ; Cell Movement ; cell proliferation ; Cytoplasm - metabolism ; Disease Models, Animal ; Humans ; Lysine - metabolism ; Male ; Mice ; Molecular Sequence Data ; mutants ; nuclear localization signals ; p300-CBP Transcription Factors - metabolism ; prostatic neoplasms ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Protein Processing, Post-Translational ; Protein Sorting Signals ; proteolysis ; S-Phase Kinase-Associated Proteins - chemistry ; S-Phase Kinase-Associated Proteins - genetics ; S-Phase Kinase-Associated Proteins - metabolism ; Sequence Alignment ; Ubiquitination</subject><ispartof>Cell, 2012-07, Vol.150 (1), p.179-193</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</citedby><cites>FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412007519$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22770219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inuzuka, Hiroyuki</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><creatorcontrib>Finley, Lydia W.S.</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wan, Lixin</creatorcontrib><creatorcontrib>Fukushima, Hidefumi</creatorcontrib><creatorcontrib>Chin, Y. Rebecca</creatorcontrib><creatorcontrib>Zhai, Bo</creatorcontrib><creatorcontrib>Shaik, Shavali</creatorcontrib><creatorcontrib>Lau, Alan W.</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><creatorcontrib>Nakayama, Keiko</creatorcontrib><creatorcontrib>Teruya-Feldstein, Julie</creatorcontrib><creatorcontrib>Toker, Alex</creatorcontrib><creatorcontrib>Haigis, Marcia C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><title>Acetylation-Dependent Regulation of Skp2 Function</title><title>Cell</title><addtitle>Cell</addtitle><description>Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration. [Display omitted] ► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis.</description><subject>Acetylation</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>cadherins</subject><subject>Cadherins - metabolism</subject><subject>carcinogenesis</subject><subject>Casein Kinase I - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>cell proliferation</subject><subject>Cytoplasm - metabolism</subject><subject>Disease Models, Animal</subject><subject>Humans</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>nuclear localization signals</subject><subject>p300-CBP Transcription Factors - metabolism</subject><subject>prostatic neoplasms</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Sorting Signals</subject><subject>proteolysis</subject><subject>S-Phase Kinase-Associated Proteins - chemistry</subject><subject>S-Phase Kinase-Associated Proteins - genetics</subject><subject>S-Phase Kinase-Associated Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Ubiquitination</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQhUVpaTZp_0APzR5zsTOSLEuGUghp0gYChaY5C1kab7XxWlvJDuTfV8ZpSC7tSTD65vHmPUI-UCgp0Pp0W1rs-5IBZSWIErh6RVYUGllUVLLXZAXQsELVsjoghyltAUAJId6SA8akBEabFaFnFseH3ow-DMUX3OPgcBjXP3AzLcN16NY3d3u2vpwGOw_ekTed6RO-f3yPyO3lxc_zb8X1969X52fXhRWUjYXoOs5bp5yogBpQqmIKW0TrnJLW2bat27oxhtdgbCMbU3GBYFtRMXSUSX5EPi-6-6ndobPZVjS93ke_M_FBB-P1y5_B_9KbcK-5aARtIAucPArE8HvCNOqdT3NiZsAwJc1yHkA5V_K_KAWW7YGgNKNsQW0MKUXsnhxR0HMteqvnTT3XokHoXEte-vj8lqeVvz1k4HgBOhO02USf9O1NVqhni7WqRCY-LQTmzO89Rp2sx8Gi8xHtqF3w_3LwB-vsp6U</recordid><startdate>20120706</startdate><enddate>20120706</enddate><creator>Inuzuka, Hiroyuki</creator><creator>Gao, Daming</creator><creator>Finley, Lydia W.S.</creator><creator>Yang, Wen</creator><creator>Wan, Lixin</creator><creator>Fukushima, Hidefumi</creator><creator>Chin, Y. Rebecca</creator><creator>Zhai, Bo</creator><creator>Shaik, Shavali</creator><creator>Lau, Alan W.</creator><creator>Wang, Zhiwei</creator><creator>Gygi, Steven P.</creator><creator>Nakayama, Keiko</creator><creator>Teruya-Feldstein, Julie</creator><creator>Toker, Alex</creator><creator>Haigis, Marcia C.</creator><creator>Pandolfi, Pier Paolo</creator><creator>Wei, Wenyi</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120706</creationdate><title>Acetylation-Dependent Regulation of Skp2 Function</title><author>Inuzuka, Hiroyuki ; Gao, Daming ; Finley, Lydia W.S. ; Yang, Wen ; Wan, Lixin ; Fukushima, Hidefumi ; Chin, Y. Rebecca ; Zhai, Bo ; Shaik, Shavali ; Lau, Alan W. ; Wang, Zhiwei ; Gygi, Steven P. ; Nakayama, Keiko ; Teruya-Feldstein, Julie ; Toker, Alex ; Haigis, Marcia C. ; Pandolfi, Pier Paolo ; Wei, Wenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-5ff33bd8d5401a088428ebeecdd87cdcbb6b69aa360ac979a435e0cb542ed1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetylation</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>cadherins</topic><topic>Cadherins - metabolism</topic><topic>carcinogenesis</topic><topic>Casein Kinase I - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>cell proliferation</topic><topic>Cytoplasm - metabolism</topic><topic>Disease Models, Animal</topic><topic>Humans</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>nuclear localization signals</topic><topic>p300-CBP Transcription Factors - metabolism</topic><topic>prostatic neoplasms</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Sorting Signals</topic><topic>proteolysis</topic><topic>S-Phase Kinase-Associated Proteins - chemistry</topic><topic>S-Phase Kinase-Associated Proteins - genetics</topic><topic>S-Phase Kinase-Associated Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inuzuka, Hiroyuki</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><creatorcontrib>Finley, Lydia W.S.</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wan, Lixin</creatorcontrib><creatorcontrib>Fukushima, Hidefumi</creatorcontrib><creatorcontrib>Chin, Y. Rebecca</creatorcontrib><creatorcontrib>Zhai, Bo</creatorcontrib><creatorcontrib>Shaik, Shavali</creatorcontrib><creatorcontrib>Lau, Alan W.</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><creatorcontrib>Nakayama, Keiko</creatorcontrib><creatorcontrib>Teruya-Feldstein, Julie</creatorcontrib><creatorcontrib>Toker, Alex</creatorcontrib><creatorcontrib>Haigis, Marcia C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inuzuka, Hiroyuki</au><au>Gao, Daming</au><au>Finley, Lydia W.S.</au><au>Yang, Wen</au><au>Wan, Lixin</au><au>Fukushima, Hidefumi</au><au>Chin, Y. Rebecca</au><au>Zhai, Bo</au><au>Shaik, Shavali</au><au>Lau, Alan W.</au><au>Wang, Zhiwei</au><au>Gygi, Steven P.</au><au>Nakayama, Keiko</au><au>Teruya-Feldstein, Julie</au><au>Toker, Alex</au><au>Haigis, Marcia C.</au><au>Pandolfi, Pier Paolo</au><au>Wei, Wenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylation-Dependent Regulation of Skp2 Function</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-07-06</date><risdate>2012</risdate><volume>150</volume><issue>1</issue><spage>179</spage><epage>193</epage><pages>179-193</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration. [Display omitted] ► Skp2 is acetylated by p300 at K68 and K71 within the nuclear localization signal ► SIRT3 interacts with and deacetylates Skp2 ► Acetylation stabilizes Skp2 and promotes its cytoplasmic localization ► Skp2 promotes cell migration through regulation of E-cadherin degradation Acetylation of the E3 ubiquitin ligase Skp2 leads to its cytoplasmic retention. This enhances the ubiquitin-mediated destruction of the adhesion molecule E-cadherin, thereby promoting cell migration during tumorigenesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22770219</pmid><doi>10.1016/j.cell.2012.05.038</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-07, Vol.150 (1), p.179-193
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3595190
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acetylation
Amino Acid Sequence
Animals
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
cadherins
Cadherins - metabolism
carcinogenesis
Casein Kinase I - metabolism
Cell Line, Tumor
Cell Movement
cell proliferation
Cytoplasm - metabolism
Disease Models, Animal
Humans
Lysine - metabolism
Male
Mice
Molecular Sequence Data
mutants
nuclear localization signals
p300-CBP Transcription Factors - metabolism
prostatic neoplasms
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Protein Processing, Post-Translational
Protein Sorting Signals
proteolysis
S-Phase Kinase-Associated Proteins - chemistry
S-Phase Kinase-Associated Proteins - genetics
S-Phase Kinase-Associated Proteins - metabolism
Sequence Alignment
Ubiquitination
title Acetylation-Dependent Regulation of Skp2 Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylation-Dependent%20Regulation%20of%20Skp2%20Function&rft.jtitle=Cell&rft.au=Inuzuka,%20Hiroyuki&rft.date=2012-07-06&rft.volume=150&rft.issue=1&rft.spage=179&rft.epage=193&rft.pages=179-193&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.05.038&rft_dat=%3Cproquest_pubme%3E2000013387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024350511&rft_id=info:pmid/22770219&rft_els_id=S0092867412007519&rfr_iscdi=true