An algorithm that identifies coronary and heart failure events in the electronic health record
The advent of universal health care coverage in the United States and the use of electronic health records can make the medical record a disease surveillance tool. The objective of our study was to identify criteria that accurately categorize acute coronary and heart failure events by using electron...
Gespeichert in:
Veröffentlicht in: | Preventing chronic disease 2013-02, Vol.10, p.E29-E29, Article 120097 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E29 |
---|---|
container_issue | |
container_start_page | E29 |
container_title | Preventing chronic disease |
container_volume | 10 |
creator | Kottke, Thomas E Baechler, Courtney Jordan |
description | The advent of universal health care coverage in the United States and the use of electronic health records can make the medical record a disease surveillance tool. The objective of our study was to identify criteria that accurately categorize acute coronary and heart failure events by using electronic health record data exclusively so that the medical record can be used for surveillance without manual record review.
We serially compared 3 computer algorithms to manual record review. The first 2 algorithms relied on ICD-9-CM (International Classification of Diseases, 9th Revision, Clinical Modification) codes, troponin levels, electrocardiogram (ECG) data, and echocardiograph data. The third algorithm relied on a detailed coding system, Intelligent Medical Objects, Inc., (IMO) interface terminology, troponin levels, and echocardiograph data.
Cohen's κ for the initial algorithm was 0.47 (95% confidence interval [CI], 0.41-0.54). Cohen's κ was 0.61 (95% CI, 0.55-0.68) for the second algorithm. Cohen's κ for the third algorithm was 0.99 (95% CI, 0.98-1.00).
Electronic medical record data are sufficient to categorize coronary heart disease and heart failure events without manual record review. However, only moderate agreement with medical record review can be achieved when the classification is based on 4-digit ICD-9-CM codes because ICD-9-CM 410.9 includes myocardial infarction with elevation of the ST segment on ECG (STEMI) and myocardial infarction without elevation of the ST segment on ECG (nSTEMI). Nearly perfect agreement can be achieved using IMO interface terminology, a more detailed coding system that tracks to ICD9, ICD10 (International Classification of Diseases, Tenth Revision, Clinical Modification), and SnoMED-CT (Systematized Nomenclature of Medicine - Clinical Terms). |
doi_str_mv | 10.5888/pcd10.120097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3592787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1314323166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-dd76f6946ce145331079c562295b163eb7fc4e04fd80d3d2afeaf9f547975efb3</originalsourceid><addsrcrecordid>eNpVkctLAzEQxoMotj5uniVHD1bz3OxehFJ8geBFr4Y0mbiR7W5NUsH_3tSq1NPMML_55oMPoRNKLmRd15dL60pLGSGN2kFjKoWcUCrp7lY_QgcpvRHCFFHVPhoxLkTDaj5GL9Mem-51iCG3C5xbk3Fw0OfgAyRshzj0Jn5i0zvcgokZexO6VQQMH4VKOPTlqEwd2FzYYNdYl1scoRy7I7TnTZfg-Kceoueb66fZ3eTh8fZ-Nn2YWF6LPHFOVb5qRGWBCsk5JaqxsmKskXNacZgrbwUQ4V1NHHfMeDC-8VKoRknwc36Irja6y9V8Ac4Wb9F0ehnDotjXgwn6_6YPrX4dPjSXDVO1KgJnPwJxeF9BynoRkoWuMz0Mq6Qpp4IzTquqoOcb1MYhpQj-7w0leh2J_o5EbyIp-Om2tT_4NwP-BULfiag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314323166</pqid></control><display><type>article</type><title>An algorithm that identifies coronary and heart failure events in the electronic health record</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kottke, Thomas E ; Baechler, Courtney Jordan</creator><creatorcontrib>Kottke, Thomas E ; Baechler, Courtney Jordan</creatorcontrib><description>The advent of universal health care coverage in the United States and the use of electronic health records can make the medical record a disease surveillance tool. The objective of our study was to identify criteria that accurately categorize acute coronary and heart failure events by using electronic health record data exclusively so that the medical record can be used for surveillance without manual record review.
We serially compared 3 computer algorithms to manual record review. The first 2 algorithms relied on ICD-9-CM (International Classification of Diseases, 9th Revision, Clinical Modification) codes, troponin levels, electrocardiogram (ECG) data, and echocardiograph data. The third algorithm relied on a detailed coding system, Intelligent Medical Objects, Inc., (IMO) interface terminology, troponin levels, and echocardiograph data.
Cohen's κ for the initial algorithm was 0.47 (95% confidence interval [CI], 0.41-0.54). Cohen's κ was 0.61 (95% CI, 0.55-0.68) for the second algorithm. Cohen's κ for the third algorithm was 0.99 (95% CI, 0.98-1.00).
Electronic medical record data are sufficient to categorize coronary heart disease and heart failure events without manual record review. However, only moderate agreement with medical record review can be achieved when the classification is based on 4-digit ICD-9-CM codes because ICD-9-CM 410.9 includes myocardial infarction with elevation of the ST segment on ECG (STEMI) and myocardial infarction without elevation of the ST segment on ECG (nSTEMI). Nearly perfect agreement can be achieved using IMO interface terminology, a more detailed coding system that tracks to ICD9, ICD10 (International Classification of Diseases, Tenth Revision, Clinical Modification), and SnoMED-CT (Systematized Nomenclature of Medicine - Clinical Terms).</description><identifier>ISSN: 1545-1151</identifier><identifier>EISSN: 1545-1151</identifier><identifier>DOI: 10.5888/pcd10.120097</identifier><identifier>PMID: 23449283</identifier><language>eng</language><publisher>United States: Centers for Disease Control and Prevention</publisher><subject>Algorithms ; CME Activity ; Coronary Disease - classification ; Electronic Health Records - standards ; Electronic Health Records - utilization ; Heart Failure - classification ; Humans ; International Classification of Diseases ; Outcome and Process Assessment (Health Care) - methods ; Population Surveillance ; Reproducibility of Results ; United States</subject><ispartof>Preventing chronic disease, 2013-02, Vol.10, p.E29-E29, Article 120097</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-dd76f6946ce145331079c562295b163eb7fc4e04fd80d3d2afeaf9f547975efb3</citedby><cites>FETCH-LOGICAL-c384t-dd76f6946ce145331079c562295b163eb7fc4e04fd80d3d2afeaf9f547975efb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592787/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592787/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23449283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kottke, Thomas E</creatorcontrib><creatorcontrib>Baechler, Courtney Jordan</creatorcontrib><title>An algorithm that identifies coronary and heart failure events in the electronic health record</title><title>Preventing chronic disease</title><addtitle>Prev Chronic Dis</addtitle><description>The advent of universal health care coverage in the United States and the use of electronic health records can make the medical record a disease surveillance tool. The objective of our study was to identify criteria that accurately categorize acute coronary and heart failure events by using electronic health record data exclusively so that the medical record can be used for surveillance without manual record review.
We serially compared 3 computer algorithms to manual record review. The first 2 algorithms relied on ICD-9-CM (International Classification of Diseases, 9th Revision, Clinical Modification) codes, troponin levels, electrocardiogram (ECG) data, and echocardiograph data. The third algorithm relied on a detailed coding system, Intelligent Medical Objects, Inc., (IMO) interface terminology, troponin levels, and echocardiograph data.
Cohen's κ for the initial algorithm was 0.47 (95% confidence interval [CI], 0.41-0.54). Cohen's κ was 0.61 (95% CI, 0.55-0.68) for the second algorithm. Cohen's κ for the third algorithm was 0.99 (95% CI, 0.98-1.00).
Electronic medical record data are sufficient to categorize coronary heart disease and heart failure events without manual record review. However, only moderate agreement with medical record review can be achieved when the classification is based on 4-digit ICD-9-CM codes because ICD-9-CM 410.9 includes myocardial infarction with elevation of the ST segment on ECG (STEMI) and myocardial infarction without elevation of the ST segment on ECG (nSTEMI). Nearly perfect agreement can be achieved using IMO interface terminology, a more detailed coding system that tracks to ICD9, ICD10 (International Classification of Diseases, Tenth Revision, Clinical Modification), and SnoMED-CT (Systematized Nomenclature of Medicine - Clinical Terms).</description><subject>Algorithms</subject><subject>CME Activity</subject><subject>Coronary Disease - classification</subject><subject>Electronic Health Records - standards</subject><subject>Electronic Health Records - utilization</subject><subject>Heart Failure - classification</subject><subject>Humans</subject><subject>International Classification of Diseases</subject><subject>Outcome and Process Assessment (Health Care) - methods</subject><subject>Population Surveillance</subject><subject>Reproducibility of Results</subject><subject>United States</subject><issn>1545-1151</issn><issn>1545-1151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLAzEQxoMotj5uniVHD1bz3OxehFJ8geBFr4Y0mbiR7W5NUsH_3tSq1NPMML_55oMPoRNKLmRd15dL60pLGSGN2kFjKoWcUCrp7lY_QgcpvRHCFFHVPhoxLkTDaj5GL9Mem-51iCG3C5xbk3Fw0OfgAyRshzj0Jn5i0zvcgokZexO6VQQMH4VKOPTlqEwd2FzYYNdYl1scoRy7I7TnTZfg-Kceoueb66fZ3eTh8fZ-Nn2YWF6LPHFOVb5qRGWBCsk5JaqxsmKskXNacZgrbwUQ4V1NHHfMeDC-8VKoRknwc36Irja6y9V8Ac4Wb9F0ehnDotjXgwn6_6YPrX4dPjSXDVO1KgJnPwJxeF9BynoRkoWuMz0Mq6Qpp4IzTquqoOcb1MYhpQj-7w0leh2J_o5EbyIp-Om2tT_4NwP-BULfiag</recordid><startdate>20130228</startdate><enddate>20130228</enddate><creator>Kottke, Thomas E</creator><creator>Baechler, Courtney Jordan</creator><general>Centers for Disease Control and Prevention</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130228</creationdate><title>An algorithm that identifies coronary and heart failure events in the electronic health record</title><author>Kottke, Thomas E ; Baechler, Courtney Jordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-dd76f6946ce145331079c562295b163eb7fc4e04fd80d3d2afeaf9f547975efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>CME Activity</topic><topic>Coronary Disease - classification</topic><topic>Electronic Health Records - standards</topic><topic>Electronic Health Records - utilization</topic><topic>Heart Failure - classification</topic><topic>Humans</topic><topic>International Classification of Diseases</topic><topic>Outcome and Process Assessment (Health Care) - methods</topic><topic>Population Surveillance</topic><topic>Reproducibility of Results</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kottke, Thomas E</creatorcontrib><creatorcontrib>Baechler, Courtney Jordan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Preventing chronic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kottke, Thomas E</au><au>Baechler, Courtney Jordan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm that identifies coronary and heart failure events in the electronic health record</atitle><jtitle>Preventing chronic disease</jtitle><addtitle>Prev Chronic Dis</addtitle><date>2013-02-28</date><risdate>2013</risdate><volume>10</volume><spage>E29</spage><epage>E29</epage><pages>E29-E29</pages><artnum>120097</artnum><issn>1545-1151</issn><eissn>1545-1151</eissn><abstract>The advent of universal health care coverage in the United States and the use of electronic health records can make the medical record a disease surveillance tool. The objective of our study was to identify criteria that accurately categorize acute coronary and heart failure events by using electronic health record data exclusively so that the medical record can be used for surveillance without manual record review.
We serially compared 3 computer algorithms to manual record review. The first 2 algorithms relied on ICD-9-CM (International Classification of Diseases, 9th Revision, Clinical Modification) codes, troponin levels, electrocardiogram (ECG) data, and echocardiograph data. The third algorithm relied on a detailed coding system, Intelligent Medical Objects, Inc., (IMO) interface terminology, troponin levels, and echocardiograph data.
Cohen's κ for the initial algorithm was 0.47 (95% confidence interval [CI], 0.41-0.54). Cohen's κ was 0.61 (95% CI, 0.55-0.68) for the second algorithm. Cohen's κ for the third algorithm was 0.99 (95% CI, 0.98-1.00).
Electronic medical record data are sufficient to categorize coronary heart disease and heart failure events without manual record review. However, only moderate agreement with medical record review can be achieved when the classification is based on 4-digit ICD-9-CM codes because ICD-9-CM 410.9 includes myocardial infarction with elevation of the ST segment on ECG (STEMI) and myocardial infarction without elevation of the ST segment on ECG (nSTEMI). Nearly perfect agreement can be achieved using IMO interface terminology, a more detailed coding system that tracks to ICD9, ICD10 (International Classification of Diseases, Tenth Revision, Clinical Modification), and SnoMED-CT (Systematized Nomenclature of Medicine - Clinical Terms).</abstract><cop>United States</cop><pub>Centers for Disease Control and Prevention</pub><pmid>23449283</pmid><doi>10.5888/pcd10.120097</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-1151 |
ispartof | Preventing chronic disease, 2013-02, Vol.10, p.E29-E29, Article 120097 |
issn | 1545-1151 1545-1151 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3592787 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms CME Activity Coronary Disease - classification Electronic Health Records - standards Electronic Health Records - utilization Heart Failure - classification Humans International Classification of Diseases Outcome and Process Assessment (Health Care) - methods Population Surveillance Reproducibility of Results United States |
title | An algorithm that identifies coronary and heart failure events in the electronic health record |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20that%20identifies%20coronary%20and%20heart%20failure%20events%20in%20the%20electronic%20health%20record&rft.jtitle=Preventing%20chronic%20disease&rft.au=Kottke,%20Thomas%20E&rft.date=2013-02-28&rft.volume=10&rft.spage=E29&rft.epage=E29&rft.pages=E29-E29&rft.artnum=120097&rft.issn=1545-1151&rft.eissn=1545-1151&rft_id=info:doi/10.5888/pcd10.120097&rft_dat=%3Cproquest_pubme%3E1314323166%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314323166&rft_id=info:pmid/23449283&rfr_iscdi=true |