Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis
The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-03, Vol.288 (10), p.6968-6979 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6979 |
---|---|
container_issue | 10 |
container_start_page | 6968 |
container_title | The Journal of biological chemistry |
container_volume | 288 |
creator | Menzies, Keir J. Singh, Kaustabh Saleem, Ayesha Hood, David A. |
description | The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise.
Background: SirT1 regulates mitochondrial biogenesis in various tissues.
Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent.
Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function.
Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle. |
doi_str_mv | 10.1074/jbc.M112.431155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3591607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819623756</els_id><sourcerecordid>1316055275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</originalsourceid><addsrcrecordid>eNp1kcFPHCEUh4mx0a3t2Zvh6GVWHgwwXEys2bYmmia2TXojDPNGMbNgYXZj__ti1pr2UC4c-N6Pl99HyDGwJTDdnj30fnkDwJetAJByjyyAdaIREn7skwVjHBrDZXdI3pbywOppDRyQQy4ENx1XC3L7NeR5EyKFZo1DcDMOdDWO6OdC00hXT5h9KEhdHOgtli1mN-c00RTpTZiTv09xyMFN9ENIdxixhPKOvBndVPD9y31Evn9cfbv83Fx_-XR1eXHdeCnl3HA1aI-67xB6zkGptvdDq5lomVKmN0M3il4jKGwF96YzXKA2rlUa-1GzURyR813u46avu3uMc3aTfcxh7fIvm1yw_77EcG_v0tYKaUAxXQNOXwJy-rnBMtt1KB6nyUVMm2JBVExKrmVFz3aoz6mUjOPrN8DsswlbTdhnE3Znok6c_L3dK_-n-gqYHYC1o23AbIsPGH21kGv9dkjhv-G_AWvomLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316055275</pqid></control><display><type>article</type><title>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Menzies, Keir J. ; Singh, Kaustabh ; Saleem, Ayesha ; Hood, David A.</creator><creatorcontrib>Menzies, Keir J. ; Singh, Kaustabh ; Saleem, Ayesha ; Hood, David A.</creatorcontrib><description>The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise.
Background: SirT1 regulates mitochondrial biogenesis in various tissues.
Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent.
Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function.
Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.431155</identifier><identifier>PMID: 23329826</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - drug effects ; AMP-Activated Protein Kinases - metabolism ; Animals ; Cell Line ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cytochrome c Oxidase Activity ; Exercise ; Immunoblotting ; Metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Microscopy, Fluorescence ; Mitochondria, Muscle - drug effects ; Mitochondria, Muscle - metabolism ; Mitochondrial Biogenesis ; Mitochondrial Respiration ; Muscle Contraction - drug effects ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - physiology ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Nampt ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; PGC-1α ; Phosphorylation - drug effects ; Physical Conditioning, Animal - physiology ; Reactive Oxygen Species (ROS) ; Reactive Oxygen Species - metabolism ; Resveratrol ; Sirt1 ; Sirtuin 1 - genetics ; Sirtuin 1 - metabolism ; Skeletal Muscle ; Stilbenes - pharmacology ; Trans-Activators - metabolism ; Transcription Factors ; Vasodilator Agents - pharmacology</subject><ispartof>The Journal of biological chemistry, 2013-03, Vol.288 (10), p.6968-6979</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</citedby><cites>FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591607/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591607/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23329826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menzies, Keir J.</creatorcontrib><creatorcontrib>Singh, Kaustabh</creatorcontrib><creatorcontrib>Saleem, Ayesha</creatorcontrib><creatorcontrib>Hood, David A.</creatorcontrib><title>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise.
Background: SirT1 regulates mitochondrial biogenesis in various tissues.
Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent.
Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function.
Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle.</description><subject>Active Transport, Cell Nucleus - drug effects</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytochrome c Oxidase Activity</subject><subject>Exercise</subject><subject>Immunoblotting</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Fluorescence</subject><subject>Mitochondria, Muscle - drug effects</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Mitochondrial Biogenesis</subject><subject>Mitochondrial Respiration</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Nampt</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>PGC-1α</subject><subject>Phosphorylation - drug effects</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Reactive Oxygen Species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Resveratrol</subject><subject>Sirt1</subject><subject>Sirtuin 1 - genetics</subject><subject>Sirtuin 1 - metabolism</subject><subject>Skeletal Muscle</subject><subject>Stilbenes - pharmacology</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><subject>Vasodilator Agents - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFPHCEUh4mx0a3t2Zvh6GVWHgwwXEys2bYmmia2TXojDPNGMbNgYXZj__ti1pr2UC4c-N6Pl99HyDGwJTDdnj30fnkDwJetAJByjyyAdaIREn7skwVjHBrDZXdI3pbywOppDRyQQy4ENx1XC3L7NeR5EyKFZo1DcDMOdDWO6OdC00hXT5h9KEhdHOgtli1mN-c00RTpTZiTv09xyMFN9ENIdxixhPKOvBndVPD9y31Evn9cfbv83Fx_-XR1eXHdeCnl3HA1aI-67xB6zkGptvdDq5lomVKmN0M3il4jKGwF96YzXKA2rlUa-1GzURyR813u46avu3uMc3aTfcxh7fIvm1yw_77EcG_v0tYKaUAxXQNOXwJy-rnBMtt1KB6nyUVMm2JBVExKrmVFz3aoz6mUjOPrN8DsswlbTdhnE3Znok6c_L3dK_-n-gqYHYC1o23AbIsPGH21kGv9dkjhv-G_AWvomLM</recordid><startdate>20130308</startdate><enddate>20130308</enddate><creator>Menzies, Keir J.</creator><creator>Singh, Kaustabh</creator><creator>Saleem, Ayesha</creator><creator>Hood, David A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130308</creationdate><title>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</title><author>Menzies, Keir J. ; Singh, Kaustabh ; Saleem, Ayesha ; Hood, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active Transport, Cell Nucleus - drug effects</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytochrome c Oxidase Activity</topic><topic>Exercise</topic><topic>Immunoblotting</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Fluorescence</topic><topic>Mitochondria, Muscle - drug effects</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Mitochondrial Biogenesis</topic><topic>Mitochondrial Respiration</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Nampt</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>PGC-1α</topic><topic>Phosphorylation - drug effects</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Reactive Oxygen Species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Resveratrol</topic><topic>Sirt1</topic><topic>Sirtuin 1 - genetics</topic><topic>Sirtuin 1 - metabolism</topic><topic>Skeletal Muscle</topic><topic>Stilbenes - pharmacology</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><topic>Vasodilator Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menzies, Keir J.</creatorcontrib><creatorcontrib>Singh, Kaustabh</creatorcontrib><creatorcontrib>Saleem, Ayesha</creatorcontrib><creatorcontrib>Hood, David A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menzies, Keir J.</au><au>Singh, Kaustabh</au><au>Saleem, Ayesha</au><au>Hood, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-03-08</date><risdate>2013</risdate><volume>288</volume><issue>10</issue><spage>6968</spage><epage>6979</epage><pages>6968-6979</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise.
Background: SirT1 regulates mitochondrial biogenesis in various tissues.
Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent.
Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function.
Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23329826</pmid><doi>10.1074/jbc.M112.431155</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2013-03, Vol.288 (10), p.6968-6979 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3591607 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Active Transport, Cell Nucleus - drug effects AMP-Activated Protein Kinases - metabolism Animals Cell Line Cell Nucleus - drug effects Cell Nucleus - metabolism Cytochrome c Oxidase Activity Exercise Immunoblotting Metabolism Mice Mice, Knockout Mice, Transgenic Microscopy, Fluorescence Mitochondria, Muscle - drug effects Mitochondria, Muscle - metabolism Mitochondrial Biogenesis Mitochondrial Respiration Muscle Contraction - drug effects Muscle Fibers, Skeletal - drug effects Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - physiology Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Nampt p38 Mitogen-Activated Protein Kinases - metabolism Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha PGC-1α Phosphorylation - drug effects Physical Conditioning, Animal - physiology Reactive Oxygen Species (ROS) Reactive Oxygen Species - metabolism Resveratrol Sirt1 Sirtuin 1 - genetics Sirtuin 1 - metabolism Skeletal Muscle Stilbenes - pharmacology Trans-Activators - metabolism Transcription Factors Vasodilator Agents - pharmacology |
title | Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sirtuin%201-mediated%20Effects%20of%20Exercise%20and%20Resveratrol%20on%20Mitochondrial%20Biogenesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Menzies,%20Keir%20J.&rft.date=2013-03-08&rft.volume=288&rft.issue=10&rft.spage=6968&rft.epage=6979&rft.pages=6968-6979&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.431155&rft_dat=%3Cproquest_pubme%3E1316055275%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1316055275&rft_id=info:pmid/23329826&rft_els_id=S0021925819623756&rfr_iscdi=true |