Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis

The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-03, Vol.288 (10), p.6968-6979
Hauptverfasser: Menzies, Keir J., Singh, Kaustabh, Saleem, Ayesha, Hood, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6979
container_issue 10
container_start_page 6968
container_title The Journal of biological chemistry
container_volume 288
creator Menzies, Keir J.
Singh, Kaustabh
Saleem, Ayesha
Hood, David A.
description The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise. Background: SirT1 regulates mitochondrial biogenesis in various tissues. Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent. Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function. Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle.
doi_str_mv 10.1074/jbc.M112.431155
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3591607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819623756</els_id><sourcerecordid>1316055275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</originalsourceid><addsrcrecordid>eNp1kcFPHCEUh4mx0a3t2Zvh6GVWHgwwXEys2bYmmia2TXojDPNGMbNgYXZj__ti1pr2UC4c-N6Pl99HyDGwJTDdnj30fnkDwJetAJByjyyAdaIREn7skwVjHBrDZXdI3pbywOppDRyQQy4ENx1XC3L7NeR5EyKFZo1DcDMOdDWO6OdC00hXT5h9KEhdHOgtli1mN-c00RTpTZiTv09xyMFN9ENIdxixhPKOvBndVPD9y31Evn9cfbv83Fx_-XR1eXHdeCnl3HA1aI-67xB6zkGptvdDq5lomVKmN0M3il4jKGwF96YzXKA2rlUa-1GzURyR813u46avu3uMc3aTfcxh7fIvm1yw_77EcG_v0tYKaUAxXQNOXwJy-rnBMtt1KB6nyUVMm2JBVExKrmVFz3aoz6mUjOPrN8DsswlbTdhnE3Znok6c_L3dK_-n-gqYHYC1o23AbIsPGH21kGv9dkjhv-G_AWvomLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316055275</pqid></control><display><type>article</type><title>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Menzies, Keir J. ; Singh, Kaustabh ; Saleem, Ayesha ; Hood, David A.</creator><creatorcontrib>Menzies, Keir J. ; Singh, Kaustabh ; Saleem, Ayesha ; Hood, David A.</creatorcontrib><description>The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise. Background: SirT1 regulates mitochondrial biogenesis in various tissues. Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent. Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function. Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.431155</identifier><identifier>PMID: 23329826</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - drug effects ; AMP-Activated Protein Kinases - metabolism ; Animals ; Cell Line ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cytochrome c Oxidase Activity ; Exercise ; Immunoblotting ; Metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Microscopy, Fluorescence ; Mitochondria, Muscle - drug effects ; Mitochondria, Muscle - metabolism ; Mitochondrial Biogenesis ; Mitochondrial Respiration ; Muscle Contraction - drug effects ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - physiology ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Nampt ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; PGC-1α ; Phosphorylation - drug effects ; Physical Conditioning, Animal - physiology ; Reactive Oxygen Species (ROS) ; Reactive Oxygen Species - metabolism ; Resveratrol ; Sirt1 ; Sirtuin 1 - genetics ; Sirtuin 1 - metabolism ; Skeletal Muscle ; Stilbenes - pharmacology ; Trans-Activators - metabolism ; Transcription Factors ; Vasodilator Agents - pharmacology</subject><ispartof>The Journal of biological chemistry, 2013-03, Vol.288 (10), p.6968-6979</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</citedby><cites>FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591607/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591607/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23329826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menzies, Keir J.</creatorcontrib><creatorcontrib>Singh, Kaustabh</creatorcontrib><creatorcontrib>Saleem, Ayesha</creatorcontrib><creatorcontrib>Hood, David A.</creatorcontrib><title>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise. Background: SirT1 regulates mitochondrial biogenesis in various tissues. Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent. Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function. Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle.</description><subject>Active Transport, Cell Nucleus - drug effects</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytochrome c Oxidase Activity</subject><subject>Exercise</subject><subject>Immunoblotting</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Fluorescence</subject><subject>Mitochondria, Muscle - drug effects</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Mitochondrial Biogenesis</subject><subject>Mitochondrial Respiration</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Nampt</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>PGC-1α</subject><subject>Phosphorylation - drug effects</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Reactive Oxygen Species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Resveratrol</subject><subject>Sirt1</subject><subject>Sirtuin 1 - genetics</subject><subject>Sirtuin 1 - metabolism</subject><subject>Skeletal Muscle</subject><subject>Stilbenes - pharmacology</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><subject>Vasodilator Agents - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFPHCEUh4mx0a3t2Zvh6GVWHgwwXEys2bYmmia2TXojDPNGMbNgYXZj__ti1pr2UC4c-N6Pl99HyDGwJTDdnj30fnkDwJetAJByjyyAdaIREn7skwVjHBrDZXdI3pbywOppDRyQQy4ENx1XC3L7NeR5EyKFZo1DcDMOdDWO6OdC00hXT5h9KEhdHOgtli1mN-c00RTpTZiTv09xyMFN9ENIdxixhPKOvBndVPD9y31Evn9cfbv83Fx_-XR1eXHdeCnl3HA1aI-67xB6zkGptvdDq5lomVKmN0M3il4jKGwF96YzXKA2rlUa-1GzURyR813u46avu3uMc3aTfcxh7fIvm1yw_77EcG_v0tYKaUAxXQNOXwJy-rnBMtt1KB6nyUVMm2JBVExKrmVFz3aoz6mUjOPrN8DsswlbTdhnE3Znok6c_L3dK_-n-gqYHYC1o23AbIsPGH21kGv9dkjhv-G_AWvomLM</recordid><startdate>20130308</startdate><enddate>20130308</enddate><creator>Menzies, Keir J.</creator><creator>Singh, Kaustabh</creator><creator>Saleem, Ayesha</creator><creator>Hood, David A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130308</creationdate><title>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</title><author>Menzies, Keir J. ; Singh, Kaustabh ; Saleem, Ayesha ; Hood, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-26d7ce7b8e1b221664bcd470340669b9d8f3b7e16e432c98923e79a467ebf70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active Transport, Cell Nucleus - drug effects</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytochrome c Oxidase Activity</topic><topic>Exercise</topic><topic>Immunoblotting</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Fluorescence</topic><topic>Mitochondria, Muscle - drug effects</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Mitochondrial Biogenesis</topic><topic>Mitochondrial Respiration</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Nampt</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>PGC-1α</topic><topic>Phosphorylation - drug effects</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Reactive Oxygen Species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Resveratrol</topic><topic>Sirt1</topic><topic>Sirtuin 1 - genetics</topic><topic>Sirtuin 1 - metabolism</topic><topic>Skeletal Muscle</topic><topic>Stilbenes - pharmacology</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><topic>Vasodilator Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menzies, Keir J.</creatorcontrib><creatorcontrib>Singh, Kaustabh</creatorcontrib><creatorcontrib>Saleem, Ayesha</creatorcontrib><creatorcontrib>Hood, David A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menzies, Keir J.</au><au>Singh, Kaustabh</au><au>Saleem, Ayesha</au><au>Hood, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-03-08</date><risdate>2013</risdate><volume>288</volume><issue>10</issue><spage>6968</spage><epage>6979</epage><pages>6968-6979</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise. Background: SirT1 regulates mitochondrial biogenesis in various tissues. Results: Exercise combined with resveratrol has a SirT1-dependent synergistic effect on mitochondrial biogenesis, despite individual treatments being SirT1-independent. Conclusion: SirT1 is important for maintaining muscle mitochondrial content and function. Significance: The dependence of muscle mitochondrial biogenesis on SirT1 depends on the metabolic state of the muscle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23329826</pmid><doi>10.1074/jbc.M112.431155</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-03, Vol.288 (10), p.6968-6979
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3591607
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Active Transport, Cell Nucleus - drug effects
AMP-Activated Protein Kinases - metabolism
Animals
Cell Line
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cytochrome c Oxidase Activity
Exercise
Immunoblotting
Metabolism
Mice
Mice, Knockout
Mice, Transgenic
Microscopy, Fluorescence
Mitochondria, Muscle - drug effects
Mitochondria, Muscle - metabolism
Mitochondrial Biogenesis
Mitochondrial Respiration
Muscle Contraction - drug effects
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - metabolism
Muscle Fibers, Skeletal - physiology
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Nampt
p38 Mitogen-Activated Protein Kinases - metabolism
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
PGC-1α
Phosphorylation - drug effects
Physical Conditioning, Animal - physiology
Reactive Oxygen Species (ROS)
Reactive Oxygen Species - metabolism
Resveratrol
Sirt1
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Skeletal Muscle
Stilbenes - pharmacology
Trans-Activators - metabolism
Transcription Factors
Vasodilator Agents - pharmacology
title Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sirtuin%201-mediated%20Effects%20of%20Exercise%20and%20Resveratrol%20on%20Mitochondrial%20Biogenesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Menzies,%20Keir%20J.&rft.date=2013-03-08&rft.volume=288&rft.issue=10&rft.spage=6968&rft.epage=6979&rft.pages=6968-6979&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.431155&rft_dat=%3Cproquest_pubme%3E1316055275%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1316055275&rft_id=info:pmid/23329826&rft_els_id=S0021925819623756&rfr_iscdi=true