Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation

An electrically conductive polypyrrole (PPy) doped with a bioactive agent is an emerging functional biomaterial for tissue engineering. We therefore used chondroitin sulfate (CS)-doped PPy coating to modify initially electrically insulating polylactide resulting in novel osteogenic scaffolds. In sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2013-04, Vol.19 (7-8), p.882-892
Hauptverfasser: Pelto, Jani, Björninen, Miina, Pälli, Aliisa, Talvitie, Elina, Hyttinen, Jari, Mannerström, Bettina, Suuronen Seppanen, Riitta, Kellomäki, Minna, Miettinen, Susanna, Haimi, Suvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 7-8
container_start_page 882
container_title Tissue engineering. Part A
container_volume 19
creator Pelto, Jani
Björninen, Miina
Pälli, Aliisa
Talvitie, Elina
Hyttinen, Jari
Mannerström, Bettina
Suuronen Seppanen, Riitta
Kellomäki, Minna
Miettinen, Susanna
Haimi, Suvi
description An electrically conductive polypyrrole (PPy) doped with a bioactive agent is an emerging functional biomaterial for tissue engineering. We therefore used chondroitin sulfate (CS)-doped PPy coating to modify initially electrically insulating polylactide resulting in novel osteogenic scaffolds. In situ chemical oxidative polymerization was used to obtain electrically conductive PPy coating on poly-96L/4D-lactide (PLA) nonwoven scaffolds. The coated scaffolds were characterized and their electrical conductivity was evaluated in hydrolysis. The ability of the coated and conductive scaffolds to enhance proliferation and osteogenic differentiation of human adipose stem cells (hASCs) under electrical stimulation (ES) in three-dimensional (3D) geometry was compared to the noncoated PLA scaffolds. Electrical conductivity of PPy-coated PLA scaffolds (PLA-PPy) was evident at the beginning of hydrolysis, but decreased during the first week of incubation due to de-doping. PLA-PPy scaffolds enhanced hASC proliferation significantly compared to the plain PLA scaffolds at 7 and 14 days. Furthermore, the alkaline phosphatase (ALP) activity of the hASCs was generally higher in PLA-PPy seeded scaffolds, but due to patient variation, no statistical significance could be determined. ES did not have a significant effect on hASCs. This study highlights the potential of novel PPy-coated PLA scaffolds in bone tissue engineering.
doi_str_mv 10.1089/ten.tea.2012.0111
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3589895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315133104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-3f9d5fed1256e33784d94ccc3c7f8b0c985cc88e5bdd7563935ea5969b63d1eb3</originalsourceid><addsrcrecordid>eNqNkUFrVDEUhR9isbX6A9xIwI2bN01eJnnJRijjqIViBRXchbzkpk3JJGOSKQz-eTOdOlRXLsIN9373cA-n614RPCNYyLMKcVZBzwZMhhkmhDzpToikY08p-_H08J-T4-55KbcYc8zH8Vl3PFAy8GEQJ92vz-kOAvqSwna9zTkF6BdJV7D3raBN9RbQV6OdS8EWtIw3OhpA59avU2mTCiu0gNAk2rJ3kHX1KSIdLVrqHLboqlRI1xC9Qe-9awDE6u-hF92R06HAy4d62n3_sPy2-NRfXn28WJxf9oYNtPbUScscWDIwDpSOYm7l3BhDzejEhI0UzBghgE3WjoxTSRloJrmcOLUEJnravdvrrjfTCqxpB2Qd1Dr7lc5blbRXf0-iv1HX6U5RJqSQrAm8fRDI6ecGSlUrX0wzrSOkTVGEEkYoJXje0Df_oLdpk2Oz1yjOKZMSk0aRPWVyKiWDOxxDsNpFq1q07Wm1i1btom07rx-7OGz8ybIB4x7YtXWMwcMEuf6H9G9qZLbf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366359901</pqid></control><display><type>article</type><title>Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Pelto, Jani ; Björninen, Miina ; Pälli, Aliisa ; Talvitie, Elina ; Hyttinen, Jari ; Mannerström, Bettina ; Suuronen Seppanen, Riitta ; Kellomäki, Minna ; Miettinen, Susanna ; Haimi, Suvi</creator><creatorcontrib>Pelto, Jani ; Björninen, Miina ; Pälli, Aliisa ; Talvitie, Elina ; Hyttinen, Jari ; Mannerström, Bettina ; Suuronen Seppanen, Riitta ; Kellomäki, Minna ; Miettinen, Susanna ; Haimi, Suvi</creatorcontrib><description>An electrically conductive polypyrrole (PPy) doped with a bioactive agent is an emerging functional biomaterial for tissue engineering. We therefore used chondroitin sulfate (CS)-doped PPy coating to modify initially electrically insulating polylactide resulting in novel osteogenic scaffolds. In situ chemical oxidative polymerization was used to obtain electrically conductive PPy coating on poly-96L/4D-lactide (PLA) nonwoven scaffolds. The coated scaffolds were characterized and their electrical conductivity was evaluated in hydrolysis. The ability of the coated and conductive scaffolds to enhance proliferation and osteogenic differentiation of human adipose stem cells (hASCs) under electrical stimulation (ES) in three-dimensional (3D) geometry was compared to the noncoated PLA scaffolds. Electrical conductivity of PPy-coated PLA scaffolds (PLA-PPy) was evident at the beginning of hydrolysis, but decreased during the first week of incubation due to de-doping. PLA-PPy scaffolds enhanced hASC proliferation significantly compared to the plain PLA scaffolds at 7 and 14 days. Furthermore, the alkaline phosphatase (ALP) activity of the hASCs was generally higher in PLA-PPy seeded scaffolds, but due to patient variation, no statistical significance could be determined. ES did not have a significant effect on hASCs. This study highlights the potential of novel PPy-coated PLA scaffolds in bone tissue engineering.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2012.0111</identifier><identifier>PMID: 23126228</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Adipose Tissue - cytology ; Adult ; Aged ; Alkaline Phosphatase - metabolism ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Coated Materials, Biocompatible - pharmacology ; Culture Media - pharmacology ; Dielectric Spectroscopy ; DNA - metabolism ; Electric Stimulation ; Electrodes ; Female ; Humans ; Hydrology ; Hydrolysis - drug effects ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; Original ; Original Articles ; Osteogenesis - drug effects ; Oxidation ; Polyesters - pharmacology ; Polymers - pharmacology ; Pyrroles - pharmacology ; Spectrometry, Mass, Electrospray Ionization ; Stem cells ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - enzymology ; Tissue engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Tissue engineering. Part A, 2013-04, Vol.19 (7-8), p.882-892</ispartof><rights>2013, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2013, Mary Ann Liebert, Inc.</rights><rights>Copyright 2013, Mary Ann Liebert, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-3f9d5fed1256e33784d94ccc3c7f8b0c985cc88e5bdd7563935ea5969b63d1eb3</citedby><cites>FETCH-LOGICAL-c523t-3f9d5fed1256e33784d94ccc3c7f8b0c985cc88e5bdd7563935ea5969b63d1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23126228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pelto, Jani</creatorcontrib><creatorcontrib>Björninen, Miina</creatorcontrib><creatorcontrib>Pälli, Aliisa</creatorcontrib><creatorcontrib>Talvitie, Elina</creatorcontrib><creatorcontrib>Hyttinen, Jari</creatorcontrib><creatorcontrib>Mannerström, Bettina</creatorcontrib><creatorcontrib>Suuronen Seppanen, Riitta</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Miettinen, Susanna</creatorcontrib><creatorcontrib>Haimi, Suvi</creatorcontrib><title>Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>An electrically conductive polypyrrole (PPy) doped with a bioactive agent is an emerging functional biomaterial for tissue engineering. We therefore used chondroitin sulfate (CS)-doped PPy coating to modify initially electrically insulating polylactide resulting in novel osteogenic scaffolds. In situ chemical oxidative polymerization was used to obtain electrically conductive PPy coating on poly-96L/4D-lactide (PLA) nonwoven scaffolds. The coated scaffolds were characterized and their electrical conductivity was evaluated in hydrolysis. The ability of the coated and conductive scaffolds to enhance proliferation and osteogenic differentiation of human adipose stem cells (hASCs) under electrical stimulation (ES) in three-dimensional (3D) geometry was compared to the noncoated PLA scaffolds. Electrical conductivity of PPy-coated PLA scaffolds (PLA-PPy) was evident at the beginning of hydrolysis, but decreased during the first week of incubation due to de-doping. PLA-PPy scaffolds enhanced hASC proliferation significantly compared to the plain PLA scaffolds at 7 and 14 days. Furthermore, the alkaline phosphatase (ALP) activity of the hASCs was generally higher in PLA-PPy seeded scaffolds, but due to patient variation, no statistical significance could be determined. ES did not have a significant effect on hASCs. This study highlights the potential of novel PPy-coated PLA scaffolds in bone tissue engineering.</description><subject>Adipose Tissue - cytology</subject><subject>Adult</subject><subject>Aged</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Culture Media - pharmacology</subject><subject>Dielectric Spectroscopy</subject><subject>DNA - metabolism</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Female</subject><subject>Humans</subject><subject>Hydrology</subject><subject>Hydrolysis - drug effects</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>Original</subject><subject>Original Articles</subject><subject>Osteogenesis - drug effects</subject><subject>Oxidation</subject><subject>Polyesters - pharmacology</subject><subject>Polymers - pharmacology</subject><subject>Pyrroles - pharmacology</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - enzymology</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUFrVDEUhR9isbX6A9xIwI2bN01eJnnJRijjqIViBRXchbzkpk3JJGOSKQz-eTOdOlRXLsIN9373cA-n614RPCNYyLMKcVZBzwZMhhkmhDzpToikY08p-_H08J-T4-55KbcYc8zH8Vl3PFAy8GEQJ92vz-kOAvqSwna9zTkF6BdJV7D3raBN9RbQV6OdS8EWtIw3OhpA59avU2mTCiu0gNAk2rJ3kHX1KSIdLVrqHLboqlRI1xC9Qe-9awDE6u-hF92R06HAy4d62n3_sPy2-NRfXn28WJxf9oYNtPbUScscWDIwDpSOYm7l3BhDzejEhI0UzBghgE3WjoxTSRloJrmcOLUEJnravdvrrjfTCqxpB2Qd1Dr7lc5blbRXf0-iv1HX6U5RJqSQrAm8fRDI6ecGSlUrX0wzrSOkTVGEEkYoJXje0Df_oLdpk2Oz1yjOKZMSk0aRPWVyKiWDOxxDsNpFq1q07Wm1i1btom07rx-7OGz8ybIB4x7YtXWMwcMEuf6H9G9qZLbf</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Pelto, Jani</creator><creator>Björninen, Miina</creator><creator>Pälli, Aliisa</creator><creator>Talvitie, Elina</creator><creator>Hyttinen, Jari</creator><creator>Mannerström, Bettina</creator><creator>Suuronen Seppanen, Riitta</creator><creator>Kellomäki, Minna</creator><creator>Miettinen, Susanna</creator><creator>Haimi, Suvi</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130401</creationdate><title>Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation</title><author>Pelto, Jani ; Björninen, Miina ; Pälli, Aliisa ; Talvitie, Elina ; Hyttinen, Jari ; Mannerström, Bettina ; Suuronen Seppanen, Riitta ; Kellomäki, Minna ; Miettinen, Susanna ; Haimi, Suvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-3f9d5fed1256e33784d94ccc3c7f8b0c985cc88e5bdd7563935ea5969b63d1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adipose Tissue - cytology</topic><topic>Adult</topic><topic>Aged</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Culture Media - pharmacology</topic><topic>Dielectric Spectroscopy</topic><topic>DNA - metabolism</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Female</topic><topic>Humans</topic><topic>Hydrology</topic><topic>Hydrolysis - drug effects</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>Original</topic><topic>Original Articles</topic><topic>Osteogenesis - drug effects</topic><topic>Oxidation</topic><topic>Polyesters - pharmacology</topic><topic>Polymers - pharmacology</topic><topic>Pyrroles - pharmacology</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - enzymology</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelto, Jani</creatorcontrib><creatorcontrib>Björninen, Miina</creatorcontrib><creatorcontrib>Pälli, Aliisa</creatorcontrib><creatorcontrib>Talvitie, Elina</creatorcontrib><creatorcontrib>Hyttinen, Jari</creatorcontrib><creatorcontrib>Mannerström, Bettina</creatorcontrib><creatorcontrib>Suuronen Seppanen, Riitta</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Miettinen, Susanna</creatorcontrib><creatorcontrib>Haimi, Suvi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelto, Jani</au><au>Björninen, Miina</au><au>Pälli, Aliisa</au><au>Talvitie, Elina</au><au>Hyttinen, Jari</au><au>Mannerström, Bettina</au><au>Suuronen Seppanen, Riitta</au><au>Kellomäki, Minna</au><au>Miettinen, Susanna</au><au>Haimi, Suvi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>19</volume><issue>7-8</issue><spage>882</spage><epage>892</epage><pages>882-892</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>An electrically conductive polypyrrole (PPy) doped with a bioactive agent is an emerging functional biomaterial for tissue engineering. We therefore used chondroitin sulfate (CS)-doped PPy coating to modify initially electrically insulating polylactide resulting in novel osteogenic scaffolds. In situ chemical oxidative polymerization was used to obtain electrically conductive PPy coating on poly-96L/4D-lactide (PLA) nonwoven scaffolds. The coated scaffolds were characterized and their electrical conductivity was evaluated in hydrolysis. The ability of the coated and conductive scaffolds to enhance proliferation and osteogenic differentiation of human adipose stem cells (hASCs) under electrical stimulation (ES) in three-dimensional (3D) geometry was compared to the noncoated PLA scaffolds. Electrical conductivity of PPy-coated PLA scaffolds (PLA-PPy) was evident at the beginning of hydrolysis, but decreased during the first week of incubation due to de-doping. PLA-PPy scaffolds enhanced hASC proliferation significantly compared to the plain PLA scaffolds at 7 and 14 days. Furthermore, the alkaline phosphatase (ALP) activity of the hASCs was generally higher in PLA-PPy seeded scaffolds, but due to patient variation, no statistical significance could be determined. ES did not have a significant effect on hASCs. This study highlights the potential of novel PPy-coated PLA scaffolds in bone tissue engineering.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>23126228</pmid><doi>10.1089/ten.tea.2012.0111</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2013-04, Vol.19 (7-8), p.882-892
issn 1937-3341
1937-335X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3589895
source MEDLINE; Alma/SFX Local Collection
subjects Adipose Tissue - cytology
Adult
Aged
Alkaline Phosphatase - metabolism
Cell Differentiation - drug effects
Cell Proliferation - drug effects
Cell Survival - drug effects
Coated Materials, Biocompatible - pharmacology
Culture Media - pharmacology
Dielectric Spectroscopy
DNA - metabolism
Electric Stimulation
Electrodes
Female
Humans
Hydrology
Hydrolysis - drug effects
Microscopy, Atomic Force
Microscopy, Electron, Scanning
Original
Original Articles
Osteogenesis - drug effects
Oxidation
Polyesters - pharmacology
Polymers - pharmacology
Pyrroles - pharmacology
Spectrometry, Mass, Electrospray Ionization
Stem cells
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - enzymology
Tissue engineering
Tissue Scaffolds - chemistry
title Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Polypyrrole-Coated%20Polylactide%20Scaffolds%20Enhance%20Adipose%20Stem%20Cell%20Proliferation%20and%20Early%20Osteogenic%20Differentiation&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Pelto,%20Jani&rft.date=2013-04-01&rft.volume=19&rft.issue=7-8&rft.spage=882&rft.epage=892&rft.pages=882-892&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2012.0111&rft_dat=%3Cproquest_pubme%3E1315133104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1366359901&rft_id=info:pmid/23126228&rfr_iscdi=true