Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film

Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2013-03, Vol.3 (1), p.1372-1372, Article 1372
Hauptverfasser: Li, Fuxiang, Saslow, Wayne M., Pokrovsky, Valery L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1372
container_issue 1
container_start_page 1372
container_title Scientific reports
container_volume 3
creator Li, Fuxiang
Saslow, Wayne M.
Pokrovsky, Valery L.
description Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H and a new type of collective oscillation.
doi_str_mv 10.1038/srep01372
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1314706016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-df86a28e500dcfae5eb1000ddfa251ed3a1ec64dc7d655c0beef011aec47d3c33</originalsourceid><addsrcrecordid>eNplkUtPGzEUhS1URCJgwR9Ao3ZTkNL6OY8NFQqvSFTtol2wshz7TuJoxg62B4l_j9tAFFpvrqXz6dzHQeiE4C8Es_prDLDGhFV0D40p5mJCGaUfdv4jdBzjCucnaMNJc4BGlHEhat6M0befSxWhuLJqEVRftD4U39XCeVdMvTPgokpQWFc8pBTs0BezkKVbFRyk4sZ2_RHab1UX4fi1HqLfN9e_pneT-x-3s-nl_UTzUqSJaetS0RoExka3CgTMSR7ImFZRQcAwRUCX3OjKlEJoPAdoMSEKNK8M04wdoouN73qY92A0uBRUJ9fB9io8S6-sfK84u5QL_ySZqMualNng48bAx2Rl1DaBXmrvHOgkSUm5aOoMfX7tEvzjADHJ3kYNXacc-CFKwgivcIn_-n36B135Ibh8A0nqpuIsszRTZxtKBx9zUu12YoLln_jkNr7Mnu6uuCXfwsrA-QaIWXILCDst_3N7Aa5bo5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897431312</pqid></control><display><type>article</type><title>Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Fuxiang ; Saslow, Wayne M. ; Pokrovsky, Valery L.</creator><creatorcontrib>Li, Fuxiang ; Saslow, Wayne M. ; Pokrovsky, Valery L. ; Texas A &amp; M Univ., College Station, TX (United States)</creatorcontrib><description>Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H and a new type of collective oscillation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep01372</identifier><identifier>PMID: 23455849</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/544 ; 639/766/119/2791 ; 639/766/119/2793 ; 639/766/483/640 ; BOSE-EINSTEIN CONDENSATES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Condensation ; Energy ; FERROMAGNETISM ; Humanities and Social Sciences ; Iron ; Light scattering ; multidisciplinary ; Physics ; Science ; Science &amp; Technology - Other Topics ; SURFACES, INTERFACES AND THIN FILMS ; Temperature effects ; THEORETICAL PHYSICS ; Thin films ; Yttrium</subject><ispartof>Scientific reports, 2013-03, Vol.3 (1), p.1372-1372, Article 1372</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Copyright © 2013, Macmillan Publishers Limited. All rights reserved 2013 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-df86a28e500dcfae5eb1000ddfa251ed3a1ec64dc7d655c0beef011aec47d3c33</citedby><cites>FETCH-LOGICAL-c465t-df86a28e500dcfae5eb1000ddfa251ed3a1ec64dc7d655c0beef011aec47d3c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586816/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586816/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23455849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1624598$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Fuxiang</creatorcontrib><creatorcontrib>Saslow, Wayne M.</creatorcontrib><creatorcontrib>Pokrovsky, Valery L.</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States)</creatorcontrib><title>Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H and a new type of collective oscillation.</description><subject>639/301/119/544</subject><subject>639/766/119/2791</subject><subject>639/766/119/2793</subject><subject>639/766/483/640</subject><subject>BOSE-EINSTEIN CONDENSATES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Condensation</subject><subject>Energy</subject><subject>FERROMAGNETISM</subject><subject>Humanities and Social Sciences</subject><subject>Iron</subject><subject>Light scattering</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science &amp; Technology - Other Topics</subject><subject>SURFACES, INTERFACES AND THIN FILMS</subject><subject>Temperature effects</subject><subject>THEORETICAL PHYSICS</subject><subject>Thin films</subject><subject>Yttrium</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtPGzEUhS1URCJgwR9Ao3ZTkNL6OY8NFQqvSFTtol2wshz7TuJoxg62B4l_j9tAFFpvrqXz6dzHQeiE4C8Es_prDLDGhFV0D40p5mJCGaUfdv4jdBzjCucnaMNJc4BGlHEhat6M0befSxWhuLJqEVRftD4U39XCeVdMvTPgokpQWFc8pBTs0BezkKVbFRyk4sZ2_RHab1UX4fi1HqLfN9e_pneT-x-3s-nl_UTzUqSJaetS0RoExka3CgTMSR7ImFZRQcAwRUCX3OjKlEJoPAdoMSEKNK8M04wdoouN73qY92A0uBRUJ9fB9io8S6-sfK84u5QL_ySZqMualNng48bAx2Rl1DaBXmrvHOgkSUm5aOoMfX7tEvzjADHJ3kYNXacc-CFKwgivcIn_-n36B135Ibh8A0nqpuIsszRTZxtKBx9zUu12YoLln_jkNr7Mnu6uuCXfwsrA-QaIWXILCDst_3N7Aa5bo5M</recordid><startdate>20130304</startdate><enddate>20130304</enddate><creator>Li, Fuxiang</creator><creator>Saslow, Wayne M.</creator><creator>Pokrovsky, Valery L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130304</creationdate><title>Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film</title><author>Li, Fuxiang ; Saslow, Wayne M. ; Pokrovsky, Valery L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-df86a28e500dcfae5eb1000ddfa251ed3a1ec64dc7d655c0beef011aec47d3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119/544</topic><topic>639/766/119/2791</topic><topic>639/766/119/2793</topic><topic>639/766/483/640</topic><topic>BOSE-EINSTEIN CONDENSATES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Condensation</topic><topic>Energy</topic><topic>FERROMAGNETISM</topic><topic>Humanities and Social Sciences</topic><topic>Iron</topic><topic>Light scattering</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science &amp; Technology - Other Topics</topic><topic>SURFACES, INTERFACES AND THIN FILMS</topic><topic>Temperature effects</topic><topic>THEORETICAL PHYSICS</topic><topic>Thin films</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fuxiang</creatorcontrib><creatorcontrib>Saslow, Wayne M.</creatorcontrib><creatorcontrib>Pokrovsky, Valery L.</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fuxiang</au><au>Saslow, Wayne M.</au><au>Pokrovsky, Valery L.</au><aucorp>Texas A &amp; M Univ., College Station, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2013-03-04</date><risdate>2013</risdate><volume>3</volume><issue>1</issue><spage>1372</spage><epage>1372</epage><pages>1372-1372</pages><artnum>1372</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H and a new type of collective oscillation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23455849</pmid><doi>10.1038/srep01372</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2013-03, Vol.3 (1), p.1372-1372, Article 1372
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586816
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/301/119/544
639/766/119/2791
639/766/119/2793
639/766/483/640
BOSE-EINSTEIN CONDENSATES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Condensation
Energy
FERROMAGNETISM
Humanities and Social Sciences
Iron
Light scattering
multidisciplinary
Physics
Science
Science & Technology - Other Topics
SURFACES, INTERFACES AND THIN FILMS
Temperature effects
THEORETICAL PHYSICS
Thin films
Yttrium
title Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Diagram%20for%20Magnon%20Condensate%20in%20Yttrium%20Iron%20Garnet%20Film&rft.jtitle=Scientific%20reports&rft.au=Li,%20Fuxiang&rft.aucorp=Texas%20A%20&%20M%20Univ.,%20College%20Station,%20TX%20(United%20States)&rft.date=2013-03-04&rft.volume=3&rft.issue=1&rft.spage=1372&rft.epage=1372&rft.pages=1372-1372&rft.artnum=1372&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep01372&rft_dat=%3Cproquest_pubme%3E1314706016%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897431312&rft_id=info:pmid/23455849&rfr_iscdi=true