ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization

Summary OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2013-02, Vol.87 (3), p.526-538
Hauptverfasser: Perkins, Timothy T., Davies, Mark R., Klemm, Elizabeth J., Rowley, Gary, Wileman, Thomas, James, Keith, Keane, Thomas, Maskell, Duncan, Hinton, Jay C. D., Dougan, Gordon, Kingsley, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 3
container_start_page 526
container_title Molecular microbiology
container_volume 87
creator Perkins, Timothy T.
Davies, Mark R.
Klemm, Elizabeth J.
Rowley, Gary
Wileman, Thomas
James, Keith
Keane, Thomas
Maskell, Duncan
Hinton, Jay C. D.
Dougan, Gordon
Kingsley, Robert A.
description Summary OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.
doi_str_mv 10.1111/mmi.12111
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876548311</sourcerecordid><originalsourceid>FETCH-LOGICAL-j4681-33e0694d92e46d520d99991fe85d3640d749a31f55a0ec29637c58e12fe5fd473</originalsourceid><addsrcrecordid>eNqFks1u1DAQxy0EotuWAy-ALHHhktYfsTe5IKFVKSu1KoJW4maZZLLxKrZTO1kUTjwCb8F79Unq3S0VcMEXj2Z-8_eMZxB6SckJTefUWnNCWbKeoBnlUmSsFMVTNCOlIBkv2JcDdBjjmhDKieTP0QHjtCSJn6Ffi3b58e7Hzwi3WLsaD0G7WAXTD95C8uhuiiZi3-ChBXxl-084wGrsvNv6PuvOegddpzG4AYKpNI4Q_EaHiK-nvjU70Z1lx2BGm7I3oLuIdVVBjD5MeAUOIja271L6ADU2Drc-Drjy6RnzXQ_Gu2P0rElp8OLhPkI378-uFx-yi6vz5eLdRbbOZUEzzoHIMq9LBrmsBSN1mQ5toBA1lzmp53mpOW2E0AQqVko-r0QBlDUgmjqf8yP0dq_bj18t1FVqK-hO9cFYHSbltVF_R5xp1cpvFBeFlGIr8OZBIPjbEeKgrInV9osc-DEqyhkvUo2S_h9lBSM5m4s8oa__Qdd-DGk6e4rmqfsyUa_-LP6x6t_jTsDpHvhmOpge45So7R6ptEdqt0fq8nK5M_g9Vka-mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282144689</pqid></control><display><type>article</type><title>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Perkins, Timothy T. ; Davies, Mark R. ; Klemm, Elizabeth J. ; Rowley, Gary ; Wileman, Thomas ; James, Keith ; Keane, Thomas ; Maskell, Duncan ; Hinton, Jay C. D. ; Dougan, Gordon ; Kingsley, Robert A.</creator><creatorcontrib>Perkins, Timothy T. ; Davies, Mark R. ; Klemm, Elizabeth J. ; Rowley, Gary ; Wileman, Thomas ; James, Keith ; Keane, Thomas ; Maskell, Duncan ; Hinton, Jay C. D. ; Dougan, Gordon ; Kingsley, Robert A.</creatorcontrib><description>Summary OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12111</identifier><identifier>PMID: 23190111</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Binding Sites ; Cecum - microbiology ; Chromatin ; Chromatin Immunoprecipitation ; Colitis - microbiology ; Deoxyribonucleic acid ; Disease Models, Animal ; DNA ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; E coli ; Escherichia coli ; Gene Expression Profiling ; Genes ; Ileum - microbiology ; Mice ; Mutation ; Regulon ; Salmonella ; Salmonella enterica ; Salmonella Infections, Animal - microbiology ; Salmonella typhi - genetics ; Salmonella typhi - pathogenicity ; Salmonella typhimurium - genetics ; Salmonella typhimurium - pathogenicity ; Sequence Analysis, DNA ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Virulence</subject><ispartof>Molecular microbiology, 2013-02, Vol.87 (3), p.526-538</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2013</rights><rights>Copyright © 2013 Blackwell Publishing Ltd 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12111$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12111$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23190111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, Timothy T.</creatorcontrib><creatorcontrib>Davies, Mark R.</creatorcontrib><creatorcontrib>Klemm, Elizabeth J.</creatorcontrib><creatorcontrib>Rowley, Gary</creatorcontrib><creatorcontrib>Wileman, Thomas</creatorcontrib><creatorcontrib>James, Keith</creatorcontrib><creatorcontrib>Keane, Thomas</creatorcontrib><creatorcontrib>Maskell, Duncan</creatorcontrib><creatorcontrib>Hinton, Jay C. D.</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kingsley, Robert A.</creatorcontrib><title>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Cecum - microbiology</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Colitis - microbiology</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Ileum - microbiology</subject><subject>Mice</subject><subject>Mutation</subject><subject>Regulon</subject><subject>Salmonella</subject><subject>Salmonella enterica</subject><subject>Salmonella Infections, Animal - microbiology</subject><subject>Salmonella typhi - genetics</subject><subject>Salmonella typhi - pathogenicity</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - pathogenicity</subject><subject>Sequence Analysis, DNA</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Virulence</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFks1u1DAQxy0EotuWAy-ALHHhktYfsTe5IKFVKSu1KoJW4maZZLLxKrZTO1kUTjwCb8F79Unq3S0VcMEXj2Z-8_eMZxB6SckJTefUWnNCWbKeoBnlUmSsFMVTNCOlIBkv2JcDdBjjmhDKieTP0QHjtCSJn6Ffi3b58e7Hzwi3WLsaD0G7WAXTD95C8uhuiiZi3-ChBXxl-084wGrsvNv6PuvOegddpzG4AYKpNI4Q_EaHiK-nvjU70Z1lx2BGm7I3oLuIdVVBjD5MeAUOIja271L6ADU2Drc-Drjy6RnzXQ_Gu2P0rElp8OLhPkI378-uFx-yi6vz5eLdRbbOZUEzzoHIMq9LBrmsBSN1mQ5toBA1lzmp53mpOW2E0AQqVko-r0QBlDUgmjqf8yP0dq_bj18t1FVqK-hO9cFYHSbltVF_R5xp1cpvFBeFlGIr8OZBIPjbEeKgrInV9osc-DEqyhkvUo2S_h9lBSM5m4s8oa__Qdd-DGk6e4rmqfsyUa_-LP6x6t_jTsDpHvhmOpge45So7R6ptEdqt0fq8nK5M_g9Vka-mw</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Perkins, Timothy T.</creator><creator>Davies, Mark R.</creator><creator>Klemm, Elizabeth J.</creator><creator>Rowley, Gary</creator><creator>Wileman, Thomas</creator><creator>James, Keith</creator><creator>Keane, Thomas</creator><creator>Maskell, Duncan</creator><creator>Hinton, Jay C. D.</creator><creator>Dougan, Gordon</creator><creator>Kingsley, Robert A.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201302</creationdate><title>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</title><author>Perkins, Timothy T. ; Davies, Mark R. ; Klemm, Elizabeth J. ; Rowley, Gary ; Wileman, Thomas ; James, Keith ; Keane, Thomas ; Maskell, Duncan ; Hinton, Jay C. D. ; Dougan, Gordon ; Kingsley, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j4681-33e0694d92e46d520d99991fe85d3640d749a31f55a0ec29637c58e12fe5fd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Cecum - microbiology</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Colitis - microbiology</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Ileum - microbiology</topic><topic>Mice</topic><topic>Mutation</topic><topic>Regulon</topic><topic>Salmonella</topic><topic>Salmonella enterica</topic><topic>Salmonella Infections, Animal - microbiology</topic><topic>Salmonella typhi - genetics</topic><topic>Salmonella typhi - pathogenicity</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - pathogenicity</topic><topic>Sequence Analysis, DNA</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Timothy T.</creatorcontrib><creatorcontrib>Davies, Mark R.</creatorcontrib><creatorcontrib>Klemm, Elizabeth J.</creatorcontrib><creatorcontrib>Rowley, Gary</creatorcontrib><creatorcontrib>Wileman, Thomas</creatorcontrib><creatorcontrib>James, Keith</creatorcontrib><creatorcontrib>Keane, Thomas</creatorcontrib><creatorcontrib>Maskell, Duncan</creatorcontrib><creatorcontrib>Hinton, Jay C. D.</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kingsley, Robert A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Timothy T.</au><au>Davies, Mark R.</au><au>Klemm, Elizabeth J.</au><au>Rowley, Gary</au><au>Wileman, Thomas</au><au>James, Keith</au><au>Keane, Thomas</au><au>Maskell, Duncan</au><au>Hinton, Jay C. D.</au><au>Dougan, Gordon</au><au>Kingsley, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>87</volume><issue>3</issue><spage>526</spage><epage>538</epage><pages>526-538</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>Summary OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23190111</pmid><doi>10.1111/mmi.12111</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2013-02, Vol.87 (3), p.526-538
issn 0950-382X
1365-2958
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586657
source MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Animals
Binding Sites
Cecum - microbiology
Chromatin
Chromatin Immunoprecipitation
Colitis - microbiology
Deoxyribonucleic acid
Disease Models, Animal
DNA
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
E coli
Escherichia coli
Gene Expression Profiling
Genes
Ileum - microbiology
Mice
Mutation
Regulon
Salmonella
Salmonella enterica
Salmonella Infections, Animal - microbiology
Salmonella typhi - genetics
Salmonella typhi - pathogenicity
Salmonella typhimurium - genetics
Salmonella typhimurium - pathogenicity
Sequence Analysis, DNA
Trans-Activators - genetics
Trans-Activators - metabolism
Virulence
title ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ChIP%E2%80%90seq%20and%20transcriptome%20analysis%20of%20the%20OmpR%20regulon%20of%20Salmonella%20enterica%20serovars%20Typhi%20and%20Typhimurium%20reveals%20accessory%20genes%20implicated%20in%20host%20colonization&rft.jtitle=Molecular%20microbiology&rft.au=Perkins,%20Timothy%20T.&rft.date=2013-02&rft.volume=87&rft.issue=3&rft.spage=526&rft.epage=538&rft.pages=526-538&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12111&rft_dat=%3Cproquest_pubme%3E2876548311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282144689&rft_id=info:pmid/23190111&rfr_iscdi=true