ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization
Summary OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2013-02, Vol.87 (3), p.526-538 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 3 |
container_start_page | 526 |
container_title | Molecular microbiology |
container_volume | 87 |
creator | Perkins, Timothy T. Davies, Mark R. Klemm, Elizabeth J. Rowley, Gary Wileman, Thomas James, Keith Keane, Thomas Maskell, Duncan Hinton, Jay C. D. Dougan, Gordon Kingsley, Robert A. |
description | Summary
OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis. |
doi_str_mv | 10.1111/mmi.12111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876548311</sourcerecordid><originalsourceid>FETCH-LOGICAL-j4681-33e0694d92e46d520d99991fe85d3640d749a31f55a0ec29637c58e12fe5fd473</originalsourceid><addsrcrecordid>eNqFks1u1DAQxy0EotuWAy-ALHHhktYfsTe5IKFVKSu1KoJW4maZZLLxKrZTO1kUTjwCb8F79Unq3S0VcMEXj2Z-8_eMZxB6SckJTefUWnNCWbKeoBnlUmSsFMVTNCOlIBkv2JcDdBjjmhDKieTP0QHjtCSJn6Ffi3b58e7Hzwi3WLsaD0G7WAXTD95C8uhuiiZi3-ChBXxl-084wGrsvNv6PuvOegddpzG4AYKpNI4Q_EaHiK-nvjU70Z1lx2BGm7I3oLuIdVVBjD5MeAUOIja271L6ADU2Drc-Drjy6RnzXQ_Gu2P0rElp8OLhPkI378-uFx-yi6vz5eLdRbbOZUEzzoHIMq9LBrmsBSN1mQ5toBA1lzmp53mpOW2E0AQqVko-r0QBlDUgmjqf8yP0dq_bj18t1FVqK-hO9cFYHSbltVF_R5xp1cpvFBeFlGIr8OZBIPjbEeKgrInV9osc-DEqyhkvUo2S_h9lBSM5m4s8oa__Qdd-DGk6e4rmqfsyUa_-LP6x6t_jTsDpHvhmOpge45So7R6ptEdqt0fq8nK5M_g9Vka-mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282144689</pqid></control><display><type>article</type><title>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Perkins, Timothy T. ; Davies, Mark R. ; Klemm, Elizabeth J. ; Rowley, Gary ; Wileman, Thomas ; James, Keith ; Keane, Thomas ; Maskell, Duncan ; Hinton, Jay C. D. ; Dougan, Gordon ; Kingsley, Robert A.</creator><creatorcontrib>Perkins, Timothy T. ; Davies, Mark R. ; Klemm, Elizabeth J. ; Rowley, Gary ; Wileman, Thomas ; James, Keith ; Keane, Thomas ; Maskell, Duncan ; Hinton, Jay C. D. ; Dougan, Gordon ; Kingsley, Robert A.</creatorcontrib><description>Summary
OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12111</identifier><identifier>PMID: 23190111</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Binding Sites ; Cecum - microbiology ; Chromatin ; Chromatin Immunoprecipitation ; Colitis - microbiology ; Deoxyribonucleic acid ; Disease Models, Animal ; DNA ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; E coli ; Escherichia coli ; Gene Expression Profiling ; Genes ; Ileum - microbiology ; Mice ; Mutation ; Regulon ; Salmonella ; Salmonella enterica ; Salmonella Infections, Animal - microbiology ; Salmonella typhi - genetics ; Salmonella typhi - pathogenicity ; Salmonella typhimurium - genetics ; Salmonella typhimurium - pathogenicity ; Sequence Analysis, DNA ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Virulence</subject><ispartof>Molecular microbiology, 2013-02, Vol.87 (3), p.526-538</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2013</rights><rights>Copyright © 2013 Blackwell Publishing Ltd 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12111$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12111$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23190111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, Timothy T.</creatorcontrib><creatorcontrib>Davies, Mark R.</creatorcontrib><creatorcontrib>Klemm, Elizabeth J.</creatorcontrib><creatorcontrib>Rowley, Gary</creatorcontrib><creatorcontrib>Wileman, Thomas</creatorcontrib><creatorcontrib>James, Keith</creatorcontrib><creatorcontrib>Keane, Thomas</creatorcontrib><creatorcontrib>Maskell, Duncan</creatorcontrib><creatorcontrib>Hinton, Jay C. D.</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kingsley, Robert A.</creatorcontrib><title>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Cecum - microbiology</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Colitis - microbiology</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Ileum - microbiology</subject><subject>Mice</subject><subject>Mutation</subject><subject>Regulon</subject><subject>Salmonella</subject><subject>Salmonella enterica</subject><subject>Salmonella Infections, Animal - microbiology</subject><subject>Salmonella typhi - genetics</subject><subject>Salmonella typhi - pathogenicity</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - pathogenicity</subject><subject>Sequence Analysis, DNA</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Virulence</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFks1u1DAQxy0EotuWAy-ALHHhktYfsTe5IKFVKSu1KoJW4maZZLLxKrZTO1kUTjwCb8F79Unq3S0VcMEXj2Z-8_eMZxB6SckJTefUWnNCWbKeoBnlUmSsFMVTNCOlIBkv2JcDdBjjmhDKieTP0QHjtCSJn6Ffi3b58e7Hzwi3WLsaD0G7WAXTD95C8uhuiiZi3-ChBXxl-084wGrsvNv6PuvOegddpzG4AYKpNI4Q_EaHiK-nvjU70Z1lx2BGm7I3oLuIdVVBjD5MeAUOIja271L6ADU2Drc-Drjy6RnzXQ_Gu2P0rElp8OLhPkI378-uFx-yi6vz5eLdRbbOZUEzzoHIMq9LBrmsBSN1mQ5toBA1lzmp53mpOW2E0AQqVko-r0QBlDUgmjqf8yP0dq_bj18t1FVqK-hO9cFYHSbltVF_R5xp1cpvFBeFlGIr8OZBIPjbEeKgrInV9osc-DEqyhkvUo2S_h9lBSM5m4s8oa__Qdd-DGk6e4rmqfsyUa_-LP6x6t_jTsDpHvhmOpge45So7R6ptEdqt0fq8nK5M_g9Vka-mw</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Perkins, Timothy T.</creator><creator>Davies, Mark R.</creator><creator>Klemm, Elizabeth J.</creator><creator>Rowley, Gary</creator><creator>Wileman, Thomas</creator><creator>James, Keith</creator><creator>Keane, Thomas</creator><creator>Maskell, Duncan</creator><creator>Hinton, Jay C. D.</creator><creator>Dougan, Gordon</creator><creator>Kingsley, Robert A.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201302</creationdate><title>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</title><author>Perkins, Timothy T. ; Davies, Mark R. ; Klemm, Elizabeth J. ; Rowley, Gary ; Wileman, Thomas ; James, Keith ; Keane, Thomas ; Maskell, Duncan ; Hinton, Jay C. D. ; Dougan, Gordon ; Kingsley, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j4681-33e0694d92e46d520d99991fe85d3640d749a31f55a0ec29637c58e12fe5fd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Cecum - microbiology</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Colitis - microbiology</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Ileum - microbiology</topic><topic>Mice</topic><topic>Mutation</topic><topic>Regulon</topic><topic>Salmonella</topic><topic>Salmonella enterica</topic><topic>Salmonella Infections, Animal - microbiology</topic><topic>Salmonella typhi - genetics</topic><topic>Salmonella typhi - pathogenicity</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - pathogenicity</topic><topic>Sequence Analysis, DNA</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Timothy T.</creatorcontrib><creatorcontrib>Davies, Mark R.</creatorcontrib><creatorcontrib>Klemm, Elizabeth J.</creatorcontrib><creatorcontrib>Rowley, Gary</creatorcontrib><creatorcontrib>Wileman, Thomas</creatorcontrib><creatorcontrib>James, Keith</creatorcontrib><creatorcontrib>Keane, Thomas</creatorcontrib><creatorcontrib>Maskell, Duncan</creatorcontrib><creatorcontrib>Hinton, Jay C. D.</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><creatorcontrib>Kingsley, Robert A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Timothy T.</au><au>Davies, Mark R.</au><au>Klemm, Elizabeth J.</au><au>Rowley, Gary</au><au>Wileman, Thomas</au><au>James, Keith</au><au>Keane, Thomas</au><au>Maskell, Duncan</au><au>Hinton, Jay C. D.</au><au>Dougan, Gordon</au><au>Kingsley, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>87</volume><issue>3</issue><spage>526</spage><epage>538</epage><pages>526-538</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>Summary
OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid‐associated protein‐like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR‐regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR‐dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium‐encoded orthologues of two divergently transcribed OmpR‐regulated operons (SL1068–71 and SL1066–67) had a putative OmpR binding site in the inter‐operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N‐acetylmuramic acid as a sole carbon source. SL1068–71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin‐pretreated mouse model of colitis.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23190111</pmid><doi>10.1111/mmi.12111</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2013-02, Vol.87 (3), p.526-538 |
issn | 0950-382X 1365-2958 1365-2958 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586657 |
source | MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Animals Binding Sites Cecum - microbiology Chromatin Chromatin Immunoprecipitation Colitis - microbiology Deoxyribonucleic acid Disease Models, Animal DNA DNA, Bacterial - chemistry DNA, Bacterial - genetics E coli Escherichia coli Gene Expression Profiling Genes Ileum - microbiology Mice Mutation Regulon Salmonella Salmonella enterica Salmonella Infections, Animal - microbiology Salmonella typhi - genetics Salmonella typhi - pathogenicity Salmonella typhimurium - genetics Salmonella typhimurium - pathogenicity Sequence Analysis, DNA Trans-Activators - genetics Trans-Activators - metabolism Virulence |
title | ChIP‐seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ChIP%E2%80%90seq%20and%20transcriptome%20analysis%20of%20the%20OmpR%20regulon%20of%20Salmonella%20enterica%20serovars%20Typhi%20and%20Typhimurium%20reveals%20accessory%20genes%20implicated%20in%20host%20colonization&rft.jtitle=Molecular%20microbiology&rft.au=Perkins,%20Timothy%20T.&rft.date=2013-02&rft.volume=87&rft.issue=3&rft.spage=526&rft.epage=538&rft.pages=526-538&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12111&rft_dat=%3Cproquest_pubme%3E2876548311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282144689&rft_id=info:pmid/23190111&rfr_iscdi=true |