Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes

4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2013-03, Vol.161 (3), p.1501-1516
Hauptverfasser: Chen, Hsi-Chuan, Song, Jina, Williams, Cranos M., Shuford, Christopher M., Liu, Jie, Wang, Jack P., Li, Quanzi, Shi, Rui, Gokce, Emine, Ducoste, Joel, Muddiman, David C., Sederoff, Ronald R., Chiang, Vincent L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1516
container_issue 3
container_start_page 1501
container_title Plant physiology (Bethesda)
container_volume 161
creator Chen, Hsi-Chuan
Song, Jina
Williams, Cranos M.
Shuford, Christopher M.
Liu, Jie
Wang, Jack P.
Li, Quanzi
Shi, Rui
Gokce, Emine
Ducoste, Joel
Muddiman, David C.
Sederoff, Ronald R.
Chiang, Vincent L.
description 4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.
doi_str_mv 10.1104/pp.112.210971
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3585612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41943562</jstor_id><sourcerecordid>41943562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCkSPIFyQOTfHnOukBabWiUGkLFYWz5TiTXVdOHOKkZft3-kfxdpfl44IPnrHn0TsezyD0gpITSol423XJshNGSaHoIzShkrOMSZE_RhNCkk_yvDhAhzFeE0Iop-IpOmCcC1EQMUH3F6EN3i3Thi_NsLo1ayyyeRgb0zuLZ9ZVp_MA7d26ATzDC7c0ESJ2Lb4M3ejHiIfErYI1fWdO8adwAx5fdWBd7awb1sf4AgZTphQWf4Hl6M3gQnuMTVvhK9fszjjU-J8sD9dnfvwB8Rl6Uhsf4fnOHqFvZ--_zj9mi88fzuezRWYlz4esKi0DQcqaAFF1zZRI9ZZ0KomCinAioAAoqLRCFbYWrGTAiWEceK54WVX8CL3b6nZj2UBloR1643XXu_QZax2M039HWrfSy3CjuczllLIk8GYn0IfvI8RBNy5a8N60EMao2aYDaTHyX3TTKM6VFCqh2Ra1fYixh3r_Ikr0ZgZ01yXL9HYGEv_qzzL29K-mJ-D1DjDRGl_3prUu_uaShlRqmriXW-46DqHfxwUtBJdTxn8C3eXFwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314337547</pqid></control><display><type>article</type><title>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Hsi-Chuan ; Song, Jina ; Williams, Cranos M. ; Shuford, Christopher M. ; Liu, Jie ; Wang, Jack P. ; Li, Quanzi ; Shi, Rui ; Gokce, Emine ; Ducoste, Joel ; Muddiman, David C. ; Sederoff, Ronald R. ; Chiang, Vincent L.</creator><creatorcontrib>Chen, Hsi-Chuan ; Song, Jina ; Williams, Cranos M. ; Shuford, Christopher M. ; Liu, Jie ; Wang, Jack P. ; Li, Quanzi ; Shi, Rui ; Gokce, Emine ; Ducoste, Joel ; Muddiman, David C. ; Sederoff, Ronald R. ; Chiang, Vincent L.</creatorcontrib><description>4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.210971</identifier><identifier>PMID: 23344904</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Allosteric Regulation - drug effects ; Binding Sites ; biochemical pathways ; BIOCHEMISTRY AND METABOLISM ; Biological and medical sciences ; Biosynthesis ; Biosynthetic Pathways - drug effects ; Blotting, Western ; Caffeic Acids - pharmacology ; Coenzyme A - metabolism ; Coenzyme A Ligases - antagonists &amp; inhibitors ; Coenzyme A Ligases - metabolism ; Computer Simulation ; Coumaric acids ; Coumaric Acids - chemistry ; Coumaric Acids - metabolism ; Coumaric Acids - pharmacology ; Enzyme substrates ; Enzymes ; Forestry ; Fundamental and applied biological sciences. Psychology ; Kinetics ; ligases ; Ligation ; Lignin ; Lignin - biosynthesis ; Lignin - chemistry ; Metabolism ; Phenylpropionates - metabolism ; Phosphoproteins - metabolism ; Phosphorylation - drug effects ; Plant Extracts ; Plant physiology and development ; Populus - drug effects ; Populus - enzymology ; Populus trichocarpa ; Propionates ; Proteins ; Proteomics ; Recombinant Fusion Proteins - metabolism ; Sequence Homology, Amino Acid ; Substrate specificity ; Substrate Specificity - drug effects ; Xylem - drug effects ; Xylem - metabolism</subject><ispartof>Plant physiology (Bethesda), 2013-03, Vol.161 (3), p.1501-1516</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2014 INIST-CNRS</rights><rights>2013 American Society of Plant Biologists. All Rights Reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</citedby><cites>FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41943562$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41943562$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27135776$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23344904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hsi-Chuan</creatorcontrib><creatorcontrib>Song, Jina</creatorcontrib><creatorcontrib>Williams, Cranos M.</creatorcontrib><creatorcontrib>Shuford, Christopher M.</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Wang, Jack P.</creatorcontrib><creatorcontrib>Li, Quanzi</creatorcontrib><creatorcontrib>Shi, Rui</creatorcontrib><creatorcontrib>Gokce, Emine</creatorcontrib><creatorcontrib>Ducoste, Joel</creatorcontrib><creatorcontrib>Muddiman, David C.</creatorcontrib><creatorcontrib>Sederoff, Ronald R.</creatorcontrib><creatorcontrib>Chiang, Vincent L.</creatorcontrib><title>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.</description><subject>Allosteric Regulation - drug effects</subject><subject>Binding Sites</subject><subject>biochemical pathways</subject><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - drug effects</subject><subject>Blotting, Western</subject><subject>Caffeic Acids - pharmacology</subject><subject>Coenzyme A - metabolism</subject><subject>Coenzyme A Ligases - antagonists &amp; inhibitors</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>Computer Simulation</subject><subject>Coumaric acids</subject><subject>Coumaric Acids - chemistry</subject><subject>Coumaric Acids - metabolism</subject><subject>Coumaric Acids - pharmacology</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>ligases</subject><subject>Ligation</subject><subject>Lignin</subject><subject>Lignin - biosynthesis</subject><subject>Lignin - chemistry</subject><subject>Metabolism</subject><subject>Phenylpropionates - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Plant Extracts</subject><subject>Plant physiology and development</subject><subject>Populus - drug effects</subject><subject>Populus - enzymology</subject><subject>Populus trichocarpa</subject><subject>Propionates</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate specificity</subject><subject>Substrate Specificity - drug effects</subject><subject>Xylem - drug effects</subject><subject>Xylem - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EotvCkSPIFyQOTfHnOukBabWiUGkLFYWz5TiTXVdOHOKkZft3-kfxdpfl44IPnrHn0TsezyD0gpITSol423XJshNGSaHoIzShkrOMSZE_RhNCkk_yvDhAhzFeE0Iop-IpOmCcC1EQMUH3F6EN3i3Thi_NsLo1ayyyeRgb0zuLZ9ZVp_MA7d26ATzDC7c0ESJ2Lb4M3ejHiIfErYI1fWdO8adwAx5fdWBd7awb1sf4AgZTphQWf4Hl6M3gQnuMTVvhK9fszjjU-J8sD9dnfvwB8Rl6Uhsf4fnOHqFvZ--_zj9mi88fzuezRWYlz4esKi0DQcqaAFF1zZRI9ZZ0KomCinAioAAoqLRCFbYWrGTAiWEceK54WVX8CL3b6nZj2UBloR1643XXu_QZax2M039HWrfSy3CjuczllLIk8GYn0IfvI8RBNy5a8N60EMao2aYDaTHyX3TTKM6VFCqh2Ra1fYixh3r_Ikr0ZgZ01yXL9HYGEv_qzzL29K-mJ-D1DjDRGl_3prUu_uaShlRqmriXW-46DqHfxwUtBJdTxn8C3eXFwQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Chen, Hsi-Chuan</creator><creator>Song, Jina</creator><creator>Williams, Cranos M.</creator><creator>Shuford, Christopher M.</creator><creator>Liu, Jie</creator><creator>Wang, Jack P.</creator><creator>Li, Quanzi</creator><creator>Shi, Rui</creator><creator>Gokce, Emine</creator><creator>Ducoste, Joel</creator><creator>Muddiman, David C.</creator><creator>Sederoff, Ronald R.</creator><creator>Chiang, Vincent L.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</title><author>Chen, Hsi-Chuan ; Song, Jina ; Williams, Cranos M. ; Shuford, Christopher M. ; Liu, Jie ; Wang, Jack P. ; Li, Quanzi ; Shi, Rui ; Gokce, Emine ; Ducoste, Joel ; Muddiman, David C. ; Sederoff, Ronald R. ; Chiang, Vincent L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Binding Sites</topic><topic>biochemical pathways</topic><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - drug effects</topic><topic>Blotting, Western</topic><topic>Caffeic Acids - pharmacology</topic><topic>Coenzyme A - metabolism</topic><topic>Coenzyme A Ligases - antagonists &amp; inhibitors</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>Computer Simulation</topic><topic>Coumaric acids</topic><topic>Coumaric Acids - chemistry</topic><topic>Coumaric Acids - metabolism</topic><topic>Coumaric Acids - pharmacology</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>ligases</topic><topic>Ligation</topic><topic>Lignin</topic><topic>Lignin - biosynthesis</topic><topic>Lignin - chemistry</topic><topic>Metabolism</topic><topic>Phenylpropionates - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Plant Extracts</topic><topic>Plant physiology and development</topic><topic>Populus - drug effects</topic><topic>Populus - enzymology</topic><topic>Populus trichocarpa</topic><topic>Propionates</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate specificity</topic><topic>Substrate Specificity - drug effects</topic><topic>Xylem - drug effects</topic><topic>Xylem - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hsi-Chuan</creatorcontrib><creatorcontrib>Song, Jina</creatorcontrib><creatorcontrib>Williams, Cranos M.</creatorcontrib><creatorcontrib>Shuford, Christopher M.</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Wang, Jack P.</creatorcontrib><creatorcontrib>Li, Quanzi</creatorcontrib><creatorcontrib>Shi, Rui</creatorcontrib><creatorcontrib>Gokce, Emine</creatorcontrib><creatorcontrib>Ducoste, Joel</creatorcontrib><creatorcontrib>Muddiman, David C.</creatorcontrib><creatorcontrib>Sederoff, Ronald R.</creatorcontrib><creatorcontrib>Chiang, Vincent L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hsi-Chuan</au><au>Song, Jina</au><au>Williams, Cranos M.</au><au>Shuford, Christopher M.</au><au>Liu, Jie</au><au>Wang, Jack P.</au><au>Li, Quanzi</au><au>Shi, Rui</au><au>Gokce, Emine</au><au>Ducoste, Joel</au><au>Muddiman, David C.</au><au>Sederoff, Ronald R.</au><au>Chiang, Vincent L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>161</volume><issue>3</issue><spage>1501</spage><epage>1516</epage><pages>1501-1516</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>23344904</pmid><doi>10.1104/pp.112.210971</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2013-03, Vol.161 (3), p.1501-1516
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3585612
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Allosteric Regulation - drug effects
Binding Sites
biochemical pathways
BIOCHEMISTRY AND METABOLISM
Biological and medical sciences
Biosynthesis
Biosynthetic Pathways - drug effects
Blotting, Western
Caffeic Acids - pharmacology
Coenzyme A - metabolism
Coenzyme A Ligases - antagonists & inhibitors
Coenzyme A Ligases - metabolism
Computer Simulation
Coumaric acids
Coumaric Acids - chemistry
Coumaric Acids - metabolism
Coumaric Acids - pharmacology
Enzyme substrates
Enzymes
Forestry
Fundamental and applied biological sciences. Psychology
Kinetics
ligases
Ligation
Lignin
Lignin - biosynthesis
Lignin - chemistry
Metabolism
Phenylpropionates - metabolism
Phosphoproteins - metabolism
Phosphorylation - drug effects
Plant Extracts
Plant physiology and development
Populus - drug effects
Populus - enzymology
Populus trichocarpa
Propionates
Proteins
Proteomics
Recombinant Fusion Proteins - metabolism
Sequence Homology, Amino Acid
Substrate specificity
Substrate Specificity - drug effects
Xylem - drug effects
Xylem - metabolism
title Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolignol%20Pathway%204-Coumaric%20Acid:Coenzyme%20A%20Ligases%20in%20Populus%20trichocarpa:%20Novel%20Specificity,%20Metabolic%20Regulation,%20and%20Simulation%20of%20Coenzyme%20A%20Ligation%20Fluxes&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Chen,%20Hsi-Chuan&rft.date=2013-03-01&rft.volume=161&rft.issue=3&rft.spage=1501&rft.epage=1516&rft.pages=1501-1516&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.210971&rft_dat=%3Cjstor_pubme%3E41943562%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314337547&rft_id=info:pmid/23344904&rft_jstor_id=41943562&rfr_iscdi=true