Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes
4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the ac...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2013-03, Vol.161 (3), p.1501-1516 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1516 |
---|---|
container_issue | 3 |
container_start_page | 1501 |
container_title | Plant physiology (Bethesda) |
container_volume | 161 |
creator | Chen, Hsi-Chuan Song, Jina Williams, Cranos M. Shuford, Christopher M. Liu, Jie Wang, Jack P. Li, Quanzi Shi, Rui Gokce, Emine Ducoste, Joel Muddiman, David C. Sederoff, Ronald R. Chiang, Vincent L. |
description | 4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis. |
doi_str_mv | 10.1104/pp.112.210971 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3585612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41943562</jstor_id><sourcerecordid>41943562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCkSPIFyQOTfHnOukBabWiUGkLFYWz5TiTXVdOHOKkZft3-kfxdpfl44IPnrHn0TsezyD0gpITSol423XJshNGSaHoIzShkrOMSZE_RhNCkk_yvDhAhzFeE0Iop-IpOmCcC1EQMUH3F6EN3i3Thi_NsLo1ayyyeRgb0zuLZ9ZVp_MA7d26ATzDC7c0ESJ2Lb4M3ejHiIfErYI1fWdO8adwAx5fdWBd7awb1sf4AgZTphQWf4Hl6M3gQnuMTVvhK9fszjjU-J8sD9dnfvwB8Rl6Uhsf4fnOHqFvZ--_zj9mi88fzuezRWYlz4esKi0DQcqaAFF1zZRI9ZZ0KomCinAioAAoqLRCFbYWrGTAiWEceK54WVX8CL3b6nZj2UBloR1643XXu_QZax2M039HWrfSy3CjuczllLIk8GYn0IfvI8RBNy5a8N60EMao2aYDaTHyX3TTKM6VFCqh2Ra1fYixh3r_Ikr0ZgZ01yXL9HYGEv_qzzL29K-mJ-D1DjDRGl_3prUu_uaShlRqmriXW-46DqHfxwUtBJdTxn8C3eXFwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314337547</pqid></control><display><type>article</type><title>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Hsi-Chuan ; Song, Jina ; Williams, Cranos M. ; Shuford, Christopher M. ; Liu, Jie ; Wang, Jack P. ; Li, Quanzi ; Shi, Rui ; Gokce, Emine ; Ducoste, Joel ; Muddiman, David C. ; Sederoff, Ronald R. ; Chiang, Vincent L.</creator><creatorcontrib>Chen, Hsi-Chuan ; Song, Jina ; Williams, Cranos M. ; Shuford, Christopher M. ; Liu, Jie ; Wang, Jack P. ; Li, Quanzi ; Shi, Rui ; Gokce, Emine ; Ducoste, Joel ; Muddiman, David C. ; Sederoff, Ronald R. ; Chiang, Vincent L.</creatorcontrib><description>4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.210971</identifier><identifier>PMID: 23344904</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Allosteric Regulation - drug effects ; Binding Sites ; biochemical pathways ; BIOCHEMISTRY AND METABOLISM ; Biological and medical sciences ; Biosynthesis ; Biosynthetic Pathways - drug effects ; Blotting, Western ; Caffeic Acids - pharmacology ; Coenzyme A - metabolism ; Coenzyme A Ligases - antagonists & inhibitors ; Coenzyme A Ligases - metabolism ; Computer Simulation ; Coumaric acids ; Coumaric Acids - chemistry ; Coumaric Acids - metabolism ; Coumaric Acids - pharmacology ; Enzyme substrates ; Enzymes ; Forestry ; Fundamental and applied biological sciences. Psychology ; Kinetics ; ligases ; Ligation ; Lignin ; Lignin - biosynthesis ; Lignin - chemistry ; Metabolism ; Phenylpropionates - metabolism ; Phosphoproteins - metabolism ; Phosphorylation - drug effects ; Plant Extracts ; Plant physiology and development ; Populus - drug effects ; Populus - enzymology ; Populus trichocarpa ; Propionates ; Proteins ; Proteomics ; Recombinant Fusion Proteins - metabolism ; Sequence Homology, Amino Acid ; Substrate specificity ; Substrate Specificity - drug effects ; Xylem - drug effects ; Xylem - metabolism</subject><ispartof>Plant physiology (Bethesda), 2013-03, Vol.161 (3), p.1501-1516</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2014 INIST-CNRS</rights><rights>2013 American Society of Plant Biologists. All Rights Reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</citedby><cites>FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41943562$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41943562$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27135776$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23344904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hsi-Chuan</creatorcontrib><creatorcontrib>Song, Jina</creatorcontrib><creatorcontrib>Williams, Cranos M.</creatorcontrib><creatorcontrib>Shuford, Christopher M.</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Wang, Jack P.</creatorcontrib><creatorcontrib>Li, Quanzi</creatorcontrib><creatorcontrib>Shi, Rui</creatorcontrib><creatorcontrib>Gokce, Emine</creatorcontrib><creatorcontrib>Ducoste, Joel</creatorcontrib><creatorcontrib>Muddiman, David C.</creatorcontrib><creatorcontrib>Sederoff, Ronald R.</creatorcontrib><creatorcontrib>Chiang, Vincent L.</creatorcontrib><title>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.</description><subject>Allosteric Regulation - drug effects</subject><subject>Binding Sites</subject><subject>biochemical pathways</subject><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - drug effects</subject><subject>Blotting, Western</subject><subject>Caffeic Acids - pharmacology</subject><subject>Coenzyme A - metabolism</subject><subject>Coenzyme A Ligases - antagonists & inhibitors</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>Computer Simulation</subject><subject>Coumaric acids</subject><subject>Coumaric Acids - chemistry</subject><subject>Coumaric Acids - metabolism</subject><subject>Coumaric Acids - pharmacology</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>ligases</subject><subject>Ligation</subject><subject>Lignin</subject><subject>Lignin - biosynthesis</subject><subject>Lignin - chemistry</subject><subject>Metabolism</subject><subject>Phenylpropionates - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Plant Extracts</subject><subject>Plant physiology and development</subject><subject>Populus - drug effects</subject><subject>Populus - enzymology</subject><subject>Populus trichocarpa</subject><subject>Propionates</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate specificity</subject><subject>Substrate Specificity - drug effects</subject><subject>Xylem - drug effects</subject><subject>Xylem - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EotvCkSPIFyQOTfHnOukBabWiUGkLFYWz5TiTXVdOHOKkZft3-kfxdpfl44IPnrHn0TsezyD0gpITSol423XJshNGSaHoIzShkrOMSZE_RhNCkk_yvDhAhzFeE0Iop-IpOmCcC1EQMUH3F6EN3i3Thi_NsLo1ayyyeRgb0zuLZ9ZVp_MA7d26ATzDC7c0ESJ2Lb4M3ejHiIfErYI1fWdO8adwAx5fdWBd7awb1sf4AgZTphQWf4Hl6M3gQnuMTVvhK9fszjjU-J8sD9dnfvwB8Rl6Uhsf4fnOHqFvZ--_zj9mi88fzuezRWYlz4esKi0DQcqaAFF1zZRI9ZZ0KomCinAioAAoqLRCFbYWrGTAiWEceK54WVX8CL3b6nZj2UBloR1643XXu_QZax2M039HWrfSy3CjuczllLIk8GYn0IfvI8RBNy5a8N60EMao2aYDaTHyX3TTKM6VFCqh2Ra1fYixh3r_Ikr0ZgZ01yXL9HYGEv_qzzL29K-mJ-D1DjDRGl_3prUu_uaShlRqmriXW-46DqHfxwUtBJdTxn8C3eXFwQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Chen, Hsi-Chuan</creator><creator>Song, Jina</creator><creator>Williams, Cranos M.</creator><creator>Shuford, Christopher M.</creator><creator>Liu, Jie</creator><creator>Wang, Jack P.</creator><creator>Li, Quanzi</creator><creator>Shi, Rui</creator><creator>Gokce, Emine</creator><creator>Ducoste, Joel</creator><creator>Muddiman, David C.</creator><creator>Sederoff, Ronald R.</creator><creator>Chiang, Vincent L.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</title><author>Chen, Hsi-Chuan ; Song, Jina ; Williams, Cranos M. ; Shuford, Christopher M. ; Liu, Jie ; Wang, Jack P. ; Li, Quanzi ; Shi, Rui ; Gokce, Emine ; Ducoste, Joel ; Muddiman, David C. ; Sederoff, Ronald R. ; Chiang, Vincent L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-dbc2e40bf0e07ff274001b16507ed0304e9ee915c479cf42b2e30a23e3873bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Binding Sites</topic><topic>biochemical pathways</topic><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - drug effects</topic><topic>Blotting, Western</topic><topic>Caffeic Acids - pharmacology</topic><topic>Coenzyme A - metabolism</topic><topic>Coenzyme A Ligases - antagonists & inhibitors</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>Computer Simulation</topic><topic>Coumaric acids</topic><topic>Coumaric Acids - chemistry</topic><topic>Coumaric Acids - metabolism</topic><topic>Coumaric Acids - pharmacology</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>ligases</topic><topic>Ligation</topic><topic>Lignin</topic><topic>Lignin - biosynthesis</topic><topic>Lignin - chemistry</topic><topic>Metabolism</topic><topic>Phenylpropionates - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Plant Extracts</topic><topic>Plant physiology and development</topic><topic>Populus - drug effects</topic><topic>Populus - enzymology</topic><topic>Populus trichocarpa</topic><topic>Propionates</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate specificity</topic><topic>Substrate Specificity - drug effects</topic><topic>Xylem - drug effects</topic><topic>Xylem - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hsi-Chuan</creatorcontrib><creatorcontrib>Song, Jina</creatorcontrib><creatorcontrib>Williams, Cranos M.</creatorcontrib><creatorcontrib>Shuford, Christopher M.</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Wang, Jack P.</creatorcontrib><creatorcontrib>Li, Quanzi</creatorcontrib><creatorcontrib>Shi, Rui</creatorcontrib><creatorcontrib>Gokce, Emine</creatorcontrib><creatorcontrib>Ducoste, Joel</creatorcontrib><creatorcontrib>Muddiman, David C.</creatorcontrib><creatorcontrib>Sederoff, Ronald R.</creatorcontrib><creatorcontrib>Chiang, Vincent L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hsi-Chuan</au><au>Song, Jina</au><au>Williams, Cranos M.</au><au>Shuford, Christopher M.</au><au>Liu, Jie</au><au>Wang, Jack P.</au><au>Li, Quanzi</au><au>Shi, Rui</au><au>Gokce, Emine</au><au>Ducoste, Joel</au><au>Muddiman, David C.</au><au>Sederoff, Ronald R.</au><au>Chiang, Vincent L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>161</volume><issue>3</issue><spage>1501</spage><epage>1516</epage><pages>1501-1516</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stemdifferentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>23344904</pmid><doi>10.1104/pp.112.210971</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2013-03, Vol.161 (3), p.1501-1516 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3585612 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Allosteric Regulation - drug effects Binding Sites biochemical pathways BIOCHEMISTRY AND METABOLISM Biological and medical sciences Biosynthesis Biosynthetic Pathways - drug effects Blotting, Western Caffeic Acids - pharmacology Coenzyme A - metabolism Coenzyme A Ligases - antagonists & inhibitors Coenzyme A Ligases - metabolism Computer Simulation Coumaric acids Coumaric Acids - chemistry Coumaric Acids - metabolism Coumaric Acids - pharmacology Enzyme substrates Enzymes Forestry Fundamental and applied biological sciences. Psychology Kinetics ligases Ligation Lignin Lignin - biosynthesis Lignin - chemistry Metabolism Phenylpropionates - metabolism Phosphoproteins - metabolism Phosphorylation - drug effects Plant Extracts Plant physiology and development Populus - drug effects Populus - enzymology Populus trichocarpa Propionates Proteins Proteomics Recombinant Fusion Proteins - metabolism Sequence Homology, Amino Acid Substrate specificity Substrate Specificity - drug effects Xylem - drug effects Xylem - metabolism |
title | Monolignol Pathway 4-Coumaric Acid:Coenzyme A Ligases in Populus trichocarpa: Novel Specificity, Metabolic Regulation, and Simulation of Coenzyme A Ligation Fluxes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolignol%20Pathway%204-Coumaric%20Acid:Coenzyme%20A%20Ligases%20in%20Populus%20trichocarpa:%20Novel%20Specificity,%20Metabolic%20Regulation,%20and%20Simulation%20of%20Coenzyme%20A%20Ligation%20Fluxes&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Chen,%20Hsi-Chuan&rft.date=2013-03-01&rft.volume=161&rft.issue=3&rft.spage=1501&rft.epage=1516&rft.pages=1501-1516&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.210971&rft_dat=%3Cjstor_pubme%3E41943562%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314337547&rft_id=info:pmid/23344904&rft_jstor_id=41943562&rfr_iscdi=true |