Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus

Many Gram-negative bacteria contain specific systems for uptake of foreign DNA, which play a critical role in the acquisition of antibiotic resistance. The TtPilF (PilF ATPase from Thermus thermophilus) is required for high transformation efficiency, but its mechanism of action is unknown. In the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2013-03, Vol.450 (2), p.417-425
Hauptverfasser: Collins, Richard F, Hassan, Darin, Karuppiah, Vijaykumar, Thistlethwaite, Angela, Derrick, Jeremy P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 2
container_start_page 417
container_title Biochemical journal
container_volume 450
creator Collins, Richard F
Hassan, Darin
Karuppiah, Vijaykumar
Thistlethwaite, Angela
Derrick, Jeremy P
description Many Gram-negative bacteria contain specific systems for uptake of foreign DNA, which play a critical role in the acquisition of antibiotic resistance. The TtPilF (PilF ATPase from Thermus thermophilus) is required for high transformation efficiency, but its mechanism of action is unknown. In the present study, we show that TtPilF is able to bind to both DNA and RNA. The structure of TtPilF was determined by cryoelectron microscopy in the presence and absence of the ATP analogue p[NH]ppA (adenosine 5'-[β,γ-imido]triphosphate), at 10 and 12 Å (1 Å=0.1 nm) resolutions respectively. It consists of two distinct N- and C-terminal regions, separated by a short stem-like structure. Binding of p[NH]ppA induces structural changes in the C-terminal domains, which are transmitted via the stem to the N-terminal domains. Molecular models were generated for the apoenzyme and p[NH]ppA-bound states in the C-terminal regions by docking of a model based on a crystal structure from a closely related enzyme. Analysis of DNA binding by electron microscopy, using gold labelling, localized the binding site to the N-terminal domains. The results suggest a model in which DNA uptake by TtPilF is powered by ATP hydrolysis, causing conformational changes in the C-terminal domains, which are transmitted via the stem to take up DNA into the cell.
doi_str_mv 10.1042/BJ20121599
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3583032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1288308332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3dbb26797eda54590d584796844212f354391c40cd15e62654bd5d21963e6f4d3</originalsourceid><addsrcrecordid>eNpVkctKAzEUhoMotl42PoBkKcJornPZCLVaLxQtWHEZMknGGZlMajIj-PZOba26Oovz8Z2f8wNwhNEZRoycX94ThAnmWbYFhpglKEoTkm6DISIxi2JE8ADshfCGEGaIoV0wIJRwwhI8BC9Pre9U23kDZaOhNaqUTRUsdAVsSwNnVT2BVw8j2HrZhMJ5K9vKNXA0n8lgYOGdhfPSeNuFJe-tW5RV3YUDsFPIOpjD9dwHz5Pr-fg2mj7e3I1H00jRJG0jqvOcxEmWGC054xnSPGVJFqeMEUwKyhnNsGJIacxNTGLOcs01wVlMTVwwTffBxcq76HJrtDJNH7QWC19Z6T-Fk5X4v2mqUry6D0F5ShElveBkLfDuvTOhFbYKytS1bIzrgsAk7cGUfqOnK1R5F4I3xeYMRmLZhPhtooeP_wbboD-vp19yuoMf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288308332</pqid></control><display><type>article</type><title>Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Collins, Richard F ; Hassan, Darin ; Karuppiah, Vijaykumar ; Thistlethwaite, Angela ; Derrick, Jeremy P</creator><creatorcontrib>Collins, Richard F ; Hassan, Darin ; Karuppiah, Vijaykumar ; Thistlethwaite, Angela ; Derrick, Jeremy P</creatorcontrib><description>Many Gram-negative bacteria contain specific systems for uptake of foreign DNA, which play a critical role in the acquisition of antibiotic resistance. The TtPilF (PilF ATPase from Thermus thermophilus) is required for high transformation efficiency, but its mechanism of action is unknown. In the present study, we show that TtPilF is able to bind to both DNA and RNA. The structure of TtPilF was determined by cryoelectron microscopy in the presence and absence of the ATP analogue p[NH]ppA (adenosine 5'-[β,γ-imido]triphosphate), at 10 and 12 Å (1 Å=0.1 nm) resolutions respectively. It consists of two distinct N- and C-terminal regions, separated by a short stem-like structure. Binding of p[NH]ppA induces structural changes in the C-terminal domains, which are transmitted via the stem to the N-terminal domains. Molecular models were generated for the apoenzyme and p[NH]ppA-bound states in the C-terminal regions by docking of a model based on a crystal structure from a closely related enzyme. Analysis of DNA binding by electron microscopy, using gold labelling, localized the binding site to the N-terminal domains. The results suggest a model in which DNA uptake by TtPilF is powered by ATP hydrolysis, causing conformational changes in the C-terminal domains, which are transmitted via the stem to take up DNA into the cell.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BJ20121599</identifier><identifier>PMID: 23252471</identifier><language>eng</language><publisher>England: Portland Press Ltd</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - analogs &amp; derivatives ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Cryoelectron Microscopy ; DNA - metabolism ; Hydrolysis ; Models, Molecular ; Protein Conformation ; Structure-Activity Relationship ; Thermus thermophilus - enzymology</subject><ispartof>Biochemical journal, 2013-03, Vol.450 (2), p.417-425</ispartof><rights>2013 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3dbb26797eda54590d584796844212f354391c40cd15e62654bd5d21963e6f4d3</citedby><cites>FETCH-LOGICAL-c378t-3dbb26797eda54590d584796844212f354391c40cd15e62654bd5d21963e6f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583032/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583032/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23252471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Richard F</creatorcontrib><creatorcontrib>Hassan, Darin</creatorcontrib><creatorcontrib>Karuppiah, Vijaykumar</creatorcontrib><creatorcontrib>Thistlethwaite, Angela</creatorcontrib><creatorcontrib>Derrick, Jeremy P</creatorcontrib><title>Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Many Gram-negative bacteria contain specific systems for uptake of foreign DNA, which play a critical role in the acquisition of antibiotic resistance. The TtPilF (PilF ATPase from Thermus thermophilus) is required for high transformation efficiency, but its mechanism of action is unknown. In the present study, we show that TtPilF is able to bind to both DNA and RNA. The structure of TtPilF was determined by cryoelectron microscopy in the presence and absence of the ATP analogue p[NH]ppA (adenosine 5'-[β,γ-imido]triphosphate), at 10 and 12 Å (1 Å=0.1 nm) resolutions respectively. It consists of two distinct N- and C-terminal regions, separated by a short stem-like structure. Binding of p[NH]ppA induces structural changes in the C-terminal domains, which are transmitted via the stem to the N-terminal domains. Molecular models were generated for the apoenzyme and p[NH]ppA-bound states in the C-terminal regions by docking of a model based on a crystal structure from a closely related enzyme. Analysis of DNA binding by electron microscopy, using gold labelling, localized the binding site to the N-terminal domains. The results suggest a model in which DNA uptake by TtPilF is powered by ATP hydrolysis, causing conformational changes in the C-terminal domains, which are transmitted via the stem to take up DNA into the cell.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - analogs &amp; derivatives</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Cryoelectron Microscopy</subject><subject>DNA - metabolism</subject><subject>Hydrolysis</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Structure-Activity Relationship</subject><subject>Thermus thermophilus - enzymology</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctKAzEUhoMotl42PoBkKcJornPZCLVaLxQtWHEZMknGGZlMajIj-PZOba26Oovz8Z2f8wNwhNEZRoycX94ThAnmWbYFhpglKEoTkm6DISIxi2JE8ADshfCGEGaIoV0wIJRwwhI8BC9Pre9U23kDZaOhNaqUTRUsdAVsSwNnVT2BVw8j2HrZhMJ5K9vKNXA0n8lgYOGdhfPSeNuFJe-tW5RV3YUDsFPIOpjD9dwHz5Pr-fg2mj7e3I1H00jRJG0jqvOcxEmWGC054xnSPGVJFqeMEUwKyhnNsGJIacxNTGLOcs01wVlMTVwwTffBxcq76HJrtDJNH7QWC19Z6T-Fk5X4v2mqUry6D0F5ShElveBkLfDuvTOhFbYKytS1bIzrgsAk7cGUfqOnK1R5F4I3xeYMRmLZhPhtooeP_wbboD-vp19yuoMf</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Collins, Richard F</creator><creator>Hassan, Darin</creator><creator>Karuppiah, Vijaykumar</creator><creator>Thistlethwaite, Angela</creator><creator>Derrick, Jeremy P</creator><general>Portland Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus</title><author>Collins, Richard F ; Hassan, Darin ; Karuppiah, Vijaykumar ; Thistlethwaite, Angela ; Derrick, Jeremy P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3dbb26797eda54590d584796844212f354391c40cd15e62654bd5d21963e6f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - analogs &amp; derivatives</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Cryoelectron Microscopy</topic><topic>DNA - metabolism</topic><topic>Hydrolysis</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Structure-Activity Relationship</topic><topic>Thermus thermophilus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Richard F</creatorcontrib><creatorcontrib>Hassan, Darin</creatorcontrib><creatorcontrib>Karuppiah, Vijaykumar</creatorcontrib><creatorcontrib>Thistlethwaite, Angela</creatorcontrib><creatorcontrib>Derrick, Jeremy P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Richard F</au><au>Hassan, Darin</au><au>Karuppiah, Vijaykumar</au><au>Thistlethwaite, Angela</au><au>Derrick, Jeremy P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>450</volume><issue>2</issue><spage>417</spage><epage>425</epage><pages>417-425</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Many Gram-negative bacteria contain specific systems for uptake of foreign DNA, which play a critical role in the acquisition of antibiotic resistance. The TtPilF (PilF ATPase from Thermus thermophilus) is required for high transformation efficiency, but its mechanism of action is unknown. In the present study, we show that TtPilF is able to bind to both DNA and RNA. The structure of TtPilF was determined by cryoelectron microscopy in the presence and absence of the ATP analogue p[NH]ppA (adenosine 5'-[β,γ-imido]triphosphate), at 10 and 12 Å (1 Å=0.1 nm) resolutions respectively. It consists of two distinct N- and C-terminal regions, separated by a short stem-like structure. Binding of p[NH]ppA induces structural changes in the C-terminal domains, which are transmitted via the stem to the N-terminal domains. Molecular models were generated for the apoenzyme and p[NH]ppA-bound states in the C-terminal regions by docking of a model based on a crystal structure from a closely related enzyme. Analysis of DNA binding by electron microscopy, using gold labelling, localized the binding site to the N-terminal domains. The results suggest a model in which DNA uptake by TtPilF is powered by ATP hydrolysis, causing conformational changes in the C-terminal domains, which are transmitted via the stem to take up DNA into the cell.</abstract><cop>England</cop><pub>Portland Press Ltd</pub><pmid>23252471</pmid><doi>10.1042/BJ20121599</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2013-03, Vol.450 (2), p.417-425
issn 0264-6021
1470-8728
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3583032
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Amino Acid Sequence
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites
Cryoelectron Microscopy
DNA - metabolism
Hydrolysis
Models, Molecular
Protein Conformation
Structure-Activity Relationship
Thermus thermophilus - enzymology
title Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanism%20of%20the%20PilF%20DNA%20transformation%20ATPase%20from%20Thermus%20thermophilus&rft.jtitle=Biochemical%20journal&rft.au=Collins,%20Richard%20F&rft.date=2013-03-01&rft.volume=450&rft.issue=2&rft.spage=417&rft.epage=425&rft.pages=417-425&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BJ20121599&rft_dat=%3Cproquest_pubme%3E1288308332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288308332&rft_id=info:pmid/23252471&rfr_iscdi=true