TRPV1 Channels Are Intrinsically Heat Sensitive and Negatively Regulated by Phosphoinositide Lipids
The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2013-02, Vol.77 (4), p.667-679 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 679 |
---|---|
container_issue | 4 |
container_start_page | 667 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 77 |
creator | Cao, Erhu Cordero-Morales, Julio F. Liu, Beiying Qin, Feng Julius, David |
description | The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP2, PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other “receptor-operated” TRP channels.
► TRPV1 is intrinsically heat sensitive ► TRPV1 is negatively regulated by phosphoinositide lipids ► Bioactive lipids serve as direct TRPV1 ligands ► TRPV1 C terminus tunes channel sensitivity through interaction with membrane lipids
Cao et al. examine the capsaicin receptor, TRPV1, in a fully defined liposome system, resolving long-standing questions regarding its intrinsic sensitivity to heat and regulation by lipids. These findings are relevant to understanding mechanisms of thermal pain and pain hypersensitivity. |
doi_str_mv | 10.1016/j.neuron.2012.12.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3583019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312011269</els_id><sourcerecordid>1323819977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-2fbeb6d89b1448ecad2906e5d3678009592261e19e92b45156a941888a2890203</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFaWlcdL-g1IEvfSyrr5Wli6FYNImYNqQpr0KrTS2ZdaSK-0a_O8r4yT9OBQGxMy8eaM3D6E3lEwpofLDZhphzClOGaFsWqMWn6EJJXrWCKr1czQhSstGshk_Q-elbAihotX0JTpjXHBNGZkgd393-4Pi-drGCH3BlxnwTRxyiCU42_cHfA12wN-g5kPYA7bR4y-wssekdu9gNfZ2AI-7A75dp7JbpxDTEewBL8Iu-PIKvVjavsDrh_cCff90dT-_bhZfP9_MLxeNk4IODVt20EmvdEeFUOCsZ5pIaD2XM0WIbjVjkgLVoFknWtpKqwVVSlmmNGGEX6CPJ97d2G3BO6g6bG92OWxtPphkg_m7E8ParNLe8FZxQnUleP9AkNPPEcpgtqE46HsbIY3FUM64qqedzSr03T_QTRpzrPIMlaLlbb2wrChxQrmcSsmwfPoMJebootmYk4vm6KKpUYt17O2fQp6GHm37rbRaBvsA2RQXIDrwIYMbjE_h_xt-AZ5nr98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645353436</pqid></control><display><type>article</type><title>TRPV1 Channels Are Intrinsically Heat Sensitive and Negatively Regulated by Phosphoinositide Lipids</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cao, Erhu ; Cordero-Morales, Julio F. ; Liu, Beiying ; Qin, Feng ; Julius, David</creator><creatorcontrib>Cao, Erhu ; Cordero-Morales, Julio F. ; Liu, Beiying ; Qin, Feng ; Julius, David</creatorcontrib><description>The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP2, PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other “receptor-operated” TRP channels.
► TRPV1 is intrinsically heat sensitive ► TRPV1 is negatively regulated by phosphoinositide lipids ► Bioactive lipids serve as direct TRPV1 ligands ► TRPV1 C terminus tunes channel sensitivity through interaction with membrane lipids
Cao et al. examine the capsaicin receptor, TRPV1, in a fully defined liposome system, resolving long-standing questions regarding its intrinsic sensitivity to heat and regulation by lipids. These findings are relevant to understanding mechanisms of thermal pain and pain hypersensitivity.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.12.016</identifier><identifier>PMID: 23439120</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Araneae ; Capsaicin - pharmacology ; Cells, Cultured ; Glycerol ; Hot Temperature - adverse effects ; Insects ; Ion Channels - metabolism ; Kinases ; Life sciences ; Lipids ; Lipids - physiology ; Medical research ; Metabolites ; Phosphatase ; Phosphatidylinositols - metabolism ; Physiology ; Sf9 Cells - metabolism ; Spodoptera ; Studies ; TRPV Cation Channels - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2013-02, Vol.77 (4), p.667-679</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 20, 2013</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-2fbeb6d89b1448ecad2906e5d3678009592261e19e92b45156a941888a2890203</citedby><cites>FETCH-LOGICAL-c641t-2fbeb6d89b1448ecad2906e5d3678009592261e19e92b45156a941888a2890203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2012.12.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23439120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Erhu</creatorcontrib><creatorcontrib>Cordero-Morales, Julio F.</creatorcontrib><creatorcontrib>Liu, Beiying</creatorcontrib><creatorcontrib>Qin, Feng</creatorcontrib><creatorcontrib>Julius, David</creatorcontrib><title>TRPV1 Channels Are Intrinsically Heat Sensitive and Negatively Regulated by Phosphoinositide Lipids</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP2, PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other “receptor-operated” TRP channels.
► TRPV1 is intrinsically heat sensitive ► TRPV1 is negatively regulated by phosphoinositide lipids ► Bioactive lipids serve as direct TRPV1 ligands ► TRPV1 C terminus tunes channel sensitivity through interaction with membrane lipids
Cao et al. examine the capsaicin receptor, TRPV1, in a fully defined liposome system, resolving long-standing questions regarding its intrinsic sensitivity to heat and regulation by lipids. These findings are relevant to understanding mechanisms of thermal pain and pain hypersensitivity.</description><subject>Animals</subject><subject>Araneae</subject><subject>Capsaicin - pharmacology</subject><subject>Cells, Cultured</subject><subject>Glycerol</subject><subject>Hot Temperature - adverse effects</subject><subject>Insects</subject><subject>Ion Channels - metabolism</subject><subject>Kinases</subject><subject>Life sciences</subject><subject>Lipids</subject><subject>Lipids - physiology</subject><subject>Medical research</subject><subject>Metabolites</subject><subject>Phosphatase</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Physiology</subject><subject>Sf9 Cells - metabolism</subject><subject>Spodoptera</subject><subject>Studies</subject><subject>TRPV Cation Channels - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1rGzEQFaWlcdL-g1IEvfSyrr5Wli6FYNImYNqQpr0KrTS2ZdaSK-0a_O8r4yT9OBQGxMy8eaM3D6E3lEwpofLDZhphzClOGaFsWqMWn6EJJXrWCKr1czQhSstGshk_Q-elbAihotX0JTpjXHBNGZkgd393-4Pi-drGCH3BlxnwTRxyiCU42_cHfA12wN-g5kPYA7bR4y-wssekdu9gNfZ2AI-7A75dp7JbpxDTEewBL8Iu-PIKvVjavsDrh_cCff90dT-_bhZfP9_MLxeNk4IODVt20EmvdEeFUOCsZ5pIaD2XM0WIbjVjkgLVoFknWtpKqwVVSlmmNGGEX6CPJ97d2G3BO6g6bG92OWxtPphkg_m7E8ParNLe8FZxQnUleP9AkNPPEcpgtqE46HsbIY3FUM64qqedzSr03T_QTRpzrPIMlaLlbb2wrChxQrmcSsmwfPoMJebootmYk4vm6KKpUYt17O2fQp6GHm37rbRaBvsA2RQXIDrwIYMbjE_h_xt-AZ5nr98</recordid><startdate>20130220</startdate><enddate>20130220</enddate><creator>Cao, Erhu</creator><creator>Cordero-Morales, Julio F.</creator><creator>Liu, Beiying</creator><creator>Qin, Feng</creator><creator>Julius, David</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130220</creationdate><title>TRPV1 Channels Are Intrinsically Heat Sensitive and Negatively Regulated by Phosphoinositide Lipids</title><author>Cao, Erhu ; Cordero-Morales, Julio F. ; Liu, Beiying ; Qin, Feng ; Julius, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-2fbeb6d89b1448ecad2906e5d3678009592261e19e92b45156a941888a2890203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Araneae</topic><topic>Capsaicin - pharmacology</topic><topic>Cells, Cultured</topic><topic>Glycerol</topic><topic>Hot Temperature - adverse effects</topic><topic>Insects</topic><topic>Ion Channels - metabolism</topic><topic>Kinases</topic><topic>Life sciences</topic><topic>Lipids</topic><topic>Lipids - physiology</topic><topic>Medical research</topic><topic>Metabolites</topic><topic>Phosphatase</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Physiology</topic><topic>Sf9 Cells - metabolism</topic><topic>Spodoptera</topic><topic>Studies</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Erhu</creatorcontrib><creatorcontrib>Cordero-Morales, Julio F.</creatorcontrib><creatorcontrib>Liu, Beiying</creatorcontrib><creatorcontrib>Qin, Feng</creatorcontrib><creatorcontrib>Julius, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Erhu</au><au>Cordero-Morales, Julio F.</au><au>Liu, Beiying</au><au>Qin, Feng</au><au>Julius, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRPV1 Channels Are Intrinsically Heat Sensitive and Negatively Regulated by Phosphoinositide Lipids</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2013-02-20</date><risdate>2013</risdate><volume>77</volume><issue>4</issue><spage>667</spage><epage>679</epage><pages>667-679</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP2, PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other “receptor-operated” TRP channels.
► TRPV1 is intrinsically heat sensitive ► TRPV1 is negatively regulated by phosphoinositide lipids ► Bioactive lipids serve as direct TRPV1 ligands ► TRPV1 C terminus tunes channel sensitivity through interaction with membrane lipids
Cao et al. examine the capsaicin receptor, TRPV1, in a fully defined liposome system, resolving long-standing questions regarding its intrinsic sensitivity to heat and regulation by lipids. These findings are relevant to understanding mechanisms of thermal pain and pain hypersensitivity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23439120</pmid><doi>10.1016/j.neuron.2012.12.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2013-02, Vol.77 (4), p.667-679 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3583019 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Araneae Capsaicin - pharmacology Cells, Cultured Glycerol Hot Temperature - adverse effects Insects Ion Channels - metabolism Kinases Life sciences Lipids Lipids - physiology Medical research Metabolites Phosphatase Phosphatidylinositols - metabolism Physiology Sf9 Cells - metabolism Spodoptera Studies TRPV Cation Channels - metabolism |
title | TRPV1 Channels Are Intrinsically Heat Sensitive and Negatively Regulated by Phosphoinositide Lipids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRPV1%20Channels%20Are%20Intrinsically%20Heat%20Sensitive%20and%20Negatively%20Regulated%20by%20Phosphoinositide%20Lipids&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Cao,%20Erhu&rft.date=2013-02-20&rft.volume=77&rft.issue=4&rft.spage=667&rft.epage=679&rft.pages=667-679&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.12.016&rft_dat=%3Cproquest_pubme%3E1323819977%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645353436&rft_id=info:pmid/23439120&rft_els_id=S0896627312011269&rfr_iscdi=true |