TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins

Jasmonates and phytoprostanes are oxylipins that regulate stress responses and diverse physiological and developmental processes. 12-Oxo-phytodienoic acid (OPDA) and phytoprostanes are structurally related electrophilic cyclopentenones, which activate similar gene expression profiles that are for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2013-02, Vol.64 (4), p.963-975
Hauptverfasser: Stotz, Henrik U, Mueller, Stefan, Zoeller, Maria, Mueller, Martin J, Berger, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 4
container_start_page 963
container_title Journal of experimental botany
container_volume 64
creator Stotz, Henrik U
Mueller, Stefan
Zoeller, Maria
Mueller, Martin J
Berger, Susanne
description Jasmonates and phytoprostanes are oxylipins that regulate stress responses and diverse physiological and developmental processes. 12-Oxo-phytodienoic acid (OPDA) and phytoprostanes are structurally related electrophilic cyclopentenones, which activate similar gene expression profiles that are for the most part different from the action of the cyclopentanone jasmonic acid (JA) and its biologically active amino acid conjugates. Whereas JA–isoleucine signals through binding to COI1, the bZIP transcription factors TGA2, TGA5, and TGA6 are involved in regulation of gene expression in response to phytoprostanes. Here root growth inhibition and target gene expression were compared after treatment with JA, OPDA, or phytoprostanes in mutants of the COI1/MYC2 pathway and in different TGA factor mutants. Inhibition of root growth by phytoprostanes was dependent on COI1 but independent of jasmonate biosynthesis. In contrast, phytoprostane-responsive gene expression was strongly dependent on TGA2, TGA5, and TGA6, but not dependent on COI1, MYC2, TGA1, and TGA4. Different mutant and overexpressing lines were used to determine individual contributions of TGA factors to cyclopentenone-responsive gene expression. Whereas OPDA-induced expression of the cytochrome P450 gene CYP81D11 was primarily regulated by TGA2 and TGA5, the glutathione S-transferase gene GST25 and the OPDA reductase gene OPR1 were regulated by TGA5 and TGA6, but less so by TGA2. These results support the model that phytoprostanes and OPDA regulate differently (i) growth responses, which are COI1 dependent but jasmonate independent; and (ii) lipid stress responses, which are strongly dependent on TGA2, TGA5, and TGA6. Identification of molecular components in cyclopentenone signalling provides an insight into novel oxylipin signal transduction pathways.
doi_str_mv 10.1093/jxb/ers389
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3580818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24040862</jstor_id><sourcerecordid>24040862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-8ab5682c49c75ec5f29210ef89d17193813cfd45625564bb1277f9ffb92553c43</originalsourceid><addsrcrecordid>eNqFks9rFDEcxYModl29eFdzEUQYmx-TmeQilEVrodCD7TlkMsmYZTYZ850tLf7zZpm11ZOXhHzfh8f38YLQa0o-UaL46fauO3UZuFRP0IrWDalYzelTtCKEsYoo0Z6gFwBbQoggQjxHJ4zzWlEuV-jX9fkZnrOJYHOY5pAi9sbOKQM2scdbA7sUzeyqEHs3uXLEGW-uLiiGMEQzjiEOOLthPxYIw-Rs8MHiaTSFyw6mFMEBnlN5FN9w63C6ux_DFCK8RM-8GcG9Ot5rdPP1y_XmW3V5dX6xObusbC3buZKmE41ktla2Fc4KzxSjxHmpetpSxSXl1ve1aJgQTd11lLWtV953qgy4rfkafV58p323c70tEbIZ9ZTDzuR7nUzQ_yox_NBDutVcSCKpLAYfjgY5_dw7mPUugHVjCenSHjRtGi54y3nzf5RTJrk69LZGHxfU5gSQnX_YiBJ9AHQpVi_FFvjt3xke0D9NFuD9ETBgzehLpTbAI9dS0ZYNC_dm4bZQWn7Ua1IT2bCiv1t0b5I2Qy4eN98ZoaL8Hnow4L8Bsg3Bxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312839109</pqid></control><display><type>article</type><title>TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Stotz, Henrik U ; Mueller, Stefan ; Zoeller, Maria ; Mueller, Martin J ; Berger, Susanne</creator><creatorcontrib>Stotz, Henrik U ; Mueller, Stefan ; Zoeller, Maria ; Mueller, Martin J ; Berger, Susanne</creatorcontrib><description>Jasmonates and phytoprostanes are oxylipins that regulate stress responses and diverse physiological and developmental processes. 12-Oxo-phytodienoic acid (OPDA) and phytoprostanes are structurally related electrophilic cyclopentenones, which activate similar gene expression profiles that are for the most part different from the action of the cyclopentanone jasmonic acid (JA) and its biologically active amino acid conjugates. Whereas JA–isoleucine signals through binding to COI1, the bZIP transcription factors TGA2, TGA5, and TGA6 are involved in regulation of gene expression in response to phytoprostanes. Here root growth inhibition and target gene expression were compared after treatment with JA, OPDA, or phytoprostanes in mutants of the COI1/MYC2 pathway and in different TGA factor mutants. Inhibition of root growth by phytoprostanes was dependent on COI1 but independent of jasmonate biosynthesis. In contrast, phytoprostane-responsive gene expression was strongly dependent on TGA2, TGA5, and TGA6, but not dependent on COI1, MYC2, TGA1, and TGA4. Different mutant and overexpressing lines were used to determine individual contributions of TGA factors to cyclopentenone-responsive gene expression. Whereas OPDA-induced expression of the cytochrome P450 gene CYP81D11 was primarily regulated by TGA2 and TGA5, the glutathione S-transferase gene GST25 and the OPDA reductase gene OPR1 were regulated by TGA5 and TGA6, but less so by TGA2. These results support the model that phytoprostanes and OPDA regulate differently (i) growth responses, which are COI1 dependent but jasmonate independent; and (ii) lipid stress responses, which are strongly dependent on TGA2, TGA5, and TGA6. Identification of molecular components in cyclopentenone signalling provides an insight into novel oxylipin signal transduction pathways.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ers389</identifier><identifier>PMID: 23349138</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press [etc.]</publisher><subject>amino acids ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Basic-Leucine Zipper Transcription Factors ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Biological and medical sciences ; Biosynthesis ; Cyclopentanes ; Cyclopentanes - metabolism ; Cyclopentanes - pharmacology ; cytochrome P-450 ; Cytochrome P-450 Enzyme System ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; drug effects ; Fatty Acids, Unsaturated ; Fatty Acids, Unsaturated - pharmacology ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Plant ; gene overexpression ; Genes ; Genes, Plant ; genetics ; glutathione transferase ; growth &amp; development ; growth retardation ; Isoleucine ; Isoleucine - metabolism ; jasmonic acid ; metabolism ; mutants ; Nuclear Proteins ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; oxylipins ; Oxylipins - metabolism ; Oxylipins - pharmacology ; pharmacology ; Plant cells ; Plant physiology and development ; plant response ; Plant Roots ; Plant Roots - drug effects ; Plant Roots - growth &amp; development ; Plant Roots - metabolism ; Plants ; Plants, Genetically Modified ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth &amp; development ; Plants, Genetically Modified - metabolism ; Prostaglandins A ; Prostaglandins A - pharmacology ; RESEARCH PAPER ; RNA ; Root growth ; Seedlings ; Signal Transduction ; stress response ; Stress, Physiological ; Transcription factors ; Transcription, Genetic ; Transcriptome</subject><ispartof>Journal of experimental botany, 2013-02, Vol.64 (4), p.963-975</ispartof><rights>Society for Experimental Biology 2013</rights><rights>2014 INIST-CNRS</rights><rights>The Authors [2013]. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-8ab5682c49c75ec5f29210ef89d17193813cfd45625564bb1277f9ffb92553c43</citedby><cites>FETCH-LOGICAL-c487t-8ab5682c49c75ec5f29210ef89d17193813cfd45625564bb1277f9ffb92553c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24040862$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24040862$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27157733$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23349138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stotz, Henrik U</creatorcontrib><creatorcontrib>Mueller, Stefan</creatorcontrib><creatorcontrib>Zoeller, Maria</creatorcontrib><creatorcontrib>Mueller, Martin J</creatorcontrib><creatorcontrib>Berger, Susanne</creatorcontrib><title>TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Jasmonates and phytoprostanes are oxylipins that regulate stress responses and diverse physiological and developmental processes. 12-Oxo-phytodienoic acid (OPDA) and phytoprostanes are structurally related electrophilic cyclopentenones, which activate similar gene expression profiles that are for the most part different from the action of the cyclopentanone jasmonic acid (JA) and its biologically active amino acid conjugates. Whereas JA–isoleucine signals through binding to COI1, the bZIP transcription factors TGA2, TGA5, and TGA6 are involved in regulation of gene expression in response to phytoprostanes. Here root growth inhibition and target gene expression were compared after treatment with JA, OPDA, or phytoprostanes in mutants of the COI1/MYC2 pathway and in different TGA factor mutants. Inhibition of root growth by phytoprostanes was dependent on COI1 but independent of jasmonate biosynthesis. In contrast, phytoprostane-responsive gene expression was strongly dependent on TGA2, TGA5, and TGA6, but not dependent on COI1, MYC2, TGA1, and TGA4. Different mutant and overexpressing lines were used to determine individual contributions of TGA factors to cyclopentenone-responsive gene expression. Whereas OPDA-induced expression of the cytochrome P450 gene CYP81D11 was primarily regulated by TGA2 and TGA5, the glutathione S-transferase gene GST25 and the OPDA reductase gene OPR1 were regulated by TGA5 and TGA6, but less so by TGA2. These results support the model that phytoprostanes and OPDA regulate differently (i) growth responses, which are COI1 dependent but jasmonate independent; and (ii) lipid stress responses, which are strongly dependent on TGA2, TGA5, and TGA6. Identification of molecular components in cyclopentenone signalling provides an insight into novel oxylipin signal transduction pathways.</description><subject>amino acids</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Basic-Leucine Zipper Transcription Factors</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Cyclopentanes</subject><subject>Cyclopentanes - metabolism</subject><subject>Cyclopentanes - pharmacology</subject><subject>cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme System</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>drug effects</subject><subject>Fatty Acids, Unsaturated</subject><subject>Fatty Acids, Unsaturated - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>gene overexpression</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>genetics</subject><subject>glutathione transferase</subject><subject>growth &amp; development</subject><subject>growth retardation</subject><subject>Isoleucine</subject><subject>Isoleucine - metabolism</subject><subject>jasmonic acid</subject><subject>metabolism</subject><subject>mutants</subject><subject>Nuclear Proteins</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>oxylipins</subject><subject>Oxylipins - metabolism</subject><subject>Oxylipins - pharmacology</subject><subject>pharmacology</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>plant response</subject><subject>Plant Roots</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Prostaglandins A</subject><subject>Prostaglandins A - pharmacology</subject><subject>RESEARCH PAPER</subject><subject>RNA</subject><subject>Root growth</subject><subject>Seedlings</subject><subject>Signal Transduction</subject><subject>stress response</subject><subject>Stress, Physiological</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptome</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9rFDEcxYModl29eFdzEUQYmx-TmeQilEVrodCD7TlkMsmYZTYZ850tLf7zZpm11ZOXhHzfh8f38YLQa0o-UaL46fauO3UZuFRP0IrWDalYzelTtCKEsYoo0Z6gFwBbQoggQjxHJ4zzWlEuV-jX9fkZnrOJYHOY5pAi9sbOKQM2scdbA7sUzeyqEHs3uXLEGW-uLiiGMEQzjiEOOLthPxYIw-Rs8MHiaTSFyw6mFMEBnlN5FN9w63C6ux_DFCK8RM-8GcG9Ot5rdPP1y_XmW3V5dX6xObusbC3buZKmE41ktla2Fc4KzxSjxHmpetpSxSXl1ve1aJgQTd11lLWtV953qgy4rfkafV58p323c70tEbIZ9ZTDzuR7nUzQ_yox_NBDutVcSCKpLAYfjgY5_dw7mPUugHVjCenSHjRtGi54y3nzf5RTJrk69LZGHxfU5gSQnX_YiBJ9AHQpVi_FFvjt3xke0D9NFuD9ETBgzehLpTbAI9dS0ZYNC_dm4bZQWn7Ua1IT2bCiv1t0b5I2Qy4eN98ZoaL8Hnow4L8Bsg3Bxw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Stotz, Henrik U</creator><creator>Mueller, Stefan</creator><creator>Zoeller, Maria</creator><creator>Mueller, Martin J</creator><creator>Berger, Susanne</creator><general>Oxford University Press [etc.]</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins</title><author>Stotz, Henrik U ; Mueller, Stefan ; Zoeller, Maria ; Mueller, Martin J ; Berger, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-8ab5682c49c75ec5f29210ef89d17193813cfd45625564bb1277f9ffb92553c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>amino acids</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Basic-Leucine Zipper Transcription Factors</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Cyclopentanes</topic><topic>Cyclopentanes - metabolism</topic><topic>Cyclopentanes - pharmacology</topic><topic>cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme System</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>drug effects</topic><topic>Fatty Acids, Unsaturated</topic><topic>Fatty Acids, Unsaturated - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>gene overexpression</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>genetics</topic><topic>glutathione transferase</topic><topic>growth &amp; development</topic><topic>growth retardation</topic><topic>Isoleucine</topic><topic>Isoleucine - metabolism</topic><topic>jasmonic acid</topic><topic>metabolism</topic><topic>mutants</topic><topic>Nuclear Proteins</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>oxylipins</topic><topic>Oxylipins - metabolism</topic><topic>Oxylipins - pharmacology</topic><topic>pharmacology</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>plant response</topic><topic>Plant Roots</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Prostaglandins A</topic><topic>Prostaglandins A - pharmacology</topic><topic>RESEARCH PAPER</topic><topic>RNA</topic><topic>Root growth</topic><topic>Seedlings</topic><topic>Signal Transduction</topic><topic>stress response</topic><topic>Stress, Physiological</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stotz, Henrik U</creatorcontrib><creatorcontrib>Mueller, Stefan</creatorcontrib><creatorcontrib>Zoeller, Maria</creatorcontrib><creatorcontrib>Mueller, Martin J</creatorcontrib><creatorcontrib>Berger, Susanne</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stotz, Henrik U</au><au>Mueller, Stefan</au><au>Zoeller, Maria</au><au>Mueller, Martin J</au><au>Berger, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>64</volume><issue>4</issue><spage>963</spage><epage>975</epage><pages>963-975</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Jasmonates and phytoprostanes are oxylipins that regulate stress responses and diverse physiological and developmental processes. 12-Oxo-phytodienoic acid (OPDA) and phytoprostanes are structurally related electrophilic cyclopentenones, which activate similar gene expression profiles that are for the most part different from the action of the cyclopentanone jasmonic acid (JA) and its biologically active amino acid conjugates. Whereas JA–isoleucine signals through binding to COI1, the bZIP transcription factors TGA2, TGA5, and TGA6 are involved in regulation of gene expression in response to phytoprostanes. Here root growth inhibition and target gene expression were compared after treatment with JA, OPDA, or phytoprostanes in mutants of the COI1/MYC2 pathway and in different TGA factor mutants. Inhibition of root growth by phytoprostanes was dependent on COI1 but independent of jasmonate biosynthesis. In contrast, phytoprostane-responsive gene expression was strongly dependent on TGA2, TGA5, and TGA6, but not dependent on COI1, MYC2, TGA1, and TGA4. Different mutant and overexpressing lines were used to determine individual contributions of TGA factors to cyclopentenone-responsive gene expression. Whereas OPDA-induced expression of the cytochrome P450 gene CYP81D11 was primarily regulated by TGA2 and TGA5, the glutathione S-transferase gene GST25 and the OPDA reductase gene OPR1 were regulated by TGA5 and TGA6, but less so by TGA2. These results support the model that phytoprostanes and OPDA regulate differently (i) growth responses, which are COI1 dependent but jasmonate independent; and (ii) lipid stress responses, which are strongly dependent on TGA2, TGA5, and TGA6. Identification of molecular components in cyclopentenone signalling provides an insight into novel oxylipin signal transduction pathways.</abstract><cop>Oxford</cop><pub>Oxford University Press [etc.]</pub><pmid>23349138</pmid><doi>10.1093/jxb/ers389</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2013-02, Vol.64 (4), p.963-975
issn 0022-0957
1460-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3580818
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects amino acids
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Basic-Leucine Zipper Transcription Factors
Basic-Leucine Zipper Transcription Factors - genetics
Basic-Leucine Zipper Transcription Factors - metabolism
Biological and medical sciences
Biosynthesis
Cyclopentanes
Cyclopentanes - metabolism
Cyclopentanes - pharmacology
cytochrome P-450
Cytochrome P-450 Enzyme System
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
drug effects
Fatty Acids, Unsaturated
Fatty Acids, Unsaturated - pharmacology
Fundamental and applied biological sciences. Psychology
Gene expression
Gene expression regulation
Gene Expression Regulation, Plant
gene overexpression
Genes
Genes, Plant
genetics
glutathione transferase
growth & development
growth retardation
Isoleucine
Isoleucine - metabolism
jasmonic acid
metabolism
mutants
Nuclear Proteins
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
oxylipins
Oxylipins - metabolism
Oxylipins - pharmacology
pharmacology
Plant cells
Plant physiology and development
plant response
Plant Roots
Plant Roots - drug effects
Plant Roots - growth & development
Plant Roots - metabolism
Plants
Plants, Genetically Modified
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Plants, Genetically Modified - metabolism
Prostaglandins A
Prostaglandins A - pharmacology
RESEARCH PAPER
RNA
Root growth
Seedlings
Signal Transduction
stress response
Stress, Physiological
Transcription factors
Transcription, Genetic
Transcriptome
title TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TGA%20transcription%20factors%20and%20jasmonate-independent%20COI1%20signalling%20regulate%20specific%20plant%20responses%20to%20reactive%20oxylipins&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Stotz,%20Henrik%20U&rft.date=2013-02-01&rft.volume=64&rft.issue=4&rft.spage=963&rft.epage=975&rft.pages=963-975&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/ers389&rft_dat=%3Cjstor_pubme%3E24040862%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312839109&rft_id=info:pmid/23349138&rft_jstor_id=24040862&rfr_iscdi=true