The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury

The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta neuropathologica 2013-03, Vol.125 (3), p.395-412
Hauptverfasser: Enzmann, Gaby, Mysiorek, Caroline, Gorina, Roser, Cheng, Yu-Jung, Ghavampour, Sharang, Hannocks, Melanie-Jane, Prinz, Vincent, Dirnagl, Ulrich, Endres, Matthias, Prinz, Marco, Beschorner, Rudi, Harter, Patrick N., Mittelbronn, Michel, Engelhardt, Britta, Sorokin, Lydia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 3
container_start_page 395
container_title Acta neuropathologica
container_volume 125
creator Enzmann, Gaby
Mysiorek, Caroline
Gorina, Roser
Cheng, Yu-Jung
Ghavampour, Sharang
Hannocks, Melanie-Jane
Prinz, Vincent
Dirnagl, Ulrich
Endres, Matthias
Prinz, Marco
Beschorner, Rudi
Harter, Patrick N.
Mittelbronn, Michel
Engelhardt, Britta
Sorokin, Lydia
description The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.
doi_str_mv 10.1007/s00401-012-1076-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3578720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352308673</galeid><sourcerecordid>A352308673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-85b76927d208743a8099b9352309b97790df7ba213e199cecd930d1ab40e04df3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCILoUfwAVF4tIeUsZ2EscXpFUFLdLycShny3Emu1557cVOVto_0N-N021LW4GEfBjZ894bz8zLsrcEzggA_xABSiAFEFoQ4HXBnmUzUjJaQMXY82wGkLI1o_QoexXjOt0oL6uX2RFltBaM8Fl2fbXC3OEY_E5FPVoV8tGZIVcxV3lEi3owO8xbFYLBkA8-33q73_iwXXk3aouJsAzKjdbr_YD5yY-v305z43pjh6AG4126JNaQyrRBGZerfkhCJuoVboxO2fUY9q-zF72yEd_cxuPs5-dPV-eXxeL7xZfz-aLQNZRD0VQtrwXlHYWGl0w1IEQrWEUZpMi5gK7nraKEIRFCo-4Eg46otgSEsuvZcfbxoLsd2w12Gl36pZXbYDYq7KVXRj7OOLOSS7-TrOINp5AETg8Cqye0y_lCTm9AK1I1gu1Iwp7cFgv-14hxkJvUNlqrHPoxSsJIVVMKUP8PlBJeN82k-v4JdO3H4NLUblCMsJKLP6ilsijTPnxqR0-icn4zr6bmLKHO_oJKp5t24x2mNeJjAjkQdPAxBuzvZ0BATp6UB0_KZDU5eVJOnHcPZ37PuDNhAtADIKaUW2J40NE_VX8DbfDrFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312313479</pqid></control><display><type>article</type><title>The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Enzmann, Gaby ; Mysiorek, Caroline ; Gorina, Roser ; Cheng, Yu-Jung ; Ghavampour, Sharang ; Hannocks, Melanie-Jane ; Prinz, Vincent ; Dirnagl, Ulrich ; Endres, Matthias ; Prinz, Marco ; Beschorner, Rudi ; Harter, Patrick N. ; Mittelbronn, Michel ; Engelhardt, Britta ; Sorokin, Lydia</creator><creatorcontrib>Enzmann, Gaby ; Mysiorek, Caroline ; Gorina, Roser ; Cheng, Yu-Jung ; Ghavampour, Sharang ; Hannocks, Melanie-Jane ; Prinz, Vincent ; Dirnagl, Ulrich ; Endres, Matthias ; Prinz, Marco ; Beschorner, Rudi ; Harter, Patrick N. ; Mittelbronn, Michel ; Engelhardt, Britta ; Sorokin, Lydia</creatorcontrib><description>The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.</description><identifier>ISSN: 0001-6322</identifier><identifier>EISSN: 1432-0533</identifier><identifier>DOI: 10.1007/s00401-012-1076-3</identifier><identifier>PMID: 23269317</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animals ; Antigens, CD - metabolism ; Antigens, Ly - metabolism ; Basement membranes ; Blood Vessels - pathology ; Blood Vessels - physiopathology ; Blood-Brain Barrier - pathology ; Blood-Brain Barrier - physiopathology ; Brain ; Brain - pathology ; Brain injury ; Cell adhesion molecules ; Cell Adhesion Molecules - metabolism ; Cell death ; Cells, Cultured ; Central nervous system ; Cerebral blood flow ; Cerebral infarction ; Confocal microscopy ; Dextrose ; Disease Models, Animal ; Endothelial cells ; Endothelium - pathology ; Functional Laterality ; Gene Expression Regulation - physiology ; Glucose ; Glucose - deficiency ; Glucose metabolism ; Granulocytes ; Granulocytes - pathology ; Humans ; Hypoxia ; Infarction, Middle Cerebral Artery - immunology ; Infarction, Middle Cerebral Artery - pathology ; Ischemia ; Leukocyte migration ; Leukocytes (granulocytic) ; Life Sciences ; Localization ; Macrophages ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Neuroimaging ; Neuropathology ; Neurosciences ; Original Paper ; Oxygen - administration &amp; dosage ; Parenchyma ; Pathology ; Permeability ; Platelet aggregation ; Proteases ; Reperfusion ; Stroke</subject><ispartof>Acta neuropathologica, 2013-03, Vol.125 (3), p.395-412</ispartof><rights>The Author(s) 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-85b76927d208743a8099b9352309b97790df7ba213e199cecd930d1ab40e04df3</citedby><cites>FETCH-LOGICAL-c604t-85b76927d208743a8099b9352309b97790df7ba213e199cecd930d1ab40e04df3</cites><orcidid>0000-0003-2338-8821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00401-012-1076-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00401-012-1076-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23269317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-artois.hal.science/hal-02515893$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Enzmann, Gaby</creatorcontrib><creatorcontrib>Mysiorek, Caroline</creatorcontrib><creatorcontrib>Gorina, Roser</creatorcontrib><creatorcontrib>Cheng, Yu-Jung</creatorcontrib><creatorcontrib>Ghavampour, Sharang</creatorcontrib><creatorcontrib>Hannocks, Melanie-Jane</creatorcontrib><creatorcontrib>Prinz, Vincent</creatorcontrib><creatorcontrib>Dirnagl, Ulrich</creatorcontrib><creatorcontrib>Endres, Matthias</creatorcontrib><creatorcontrib>Prinz, Marco</creatorcontrib><creatorcontrib>Beschorner, Rudi</creatorcontrib><creatorcontrib>Harter, Patrick N.</creatorcontrib><creatorcontrib>Mittelbronn, Michel</creatorcontrib><creatorcontrib>Engelhardt, Britta</creatorcontrib><creatorcontrib>Sorokin, Lydia</creatorcontrib><title>The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury</title><title>Acta neuropathologica</title><addtitle>Acta Neuropathol</addtitle><addtitle>Acta Neuropathol</addtitle><description>The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.</description><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Antigens, Ly - metabolism</subject><subject>Basement membranes</subject><subject>Blood Vessels - pathology</subject><subject>Blood Vessels - physiopathology</subject><subject>Blood-Brain Barrier - pathology</subject><subject>Blood-Brain Barrier - physiopathology</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain injury</subject><subject>Cell adhesion molecules</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell death</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Cerebral blood flow</subject><subject>Cerebral infarction</subject><subject>Confocal microscopy</subject><subject>Dextrose</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Endothelium - pathology</subject><subject>Functional Laterality</subject><subject>Gene Expression Regulation - physiology</subject><subject>Glucose</subject><subject>Glucose - deficiency</subject><subject>Glucose metabolism</subject><subject>Granulocytes</subject><subject>Granulocytes - pathology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Infarction, Middle Cerebral Artery - immunology</subject><subject>Infarction, Middle Cerebral Artery - pathology</subject><subject>Ischemia</subject><subject>Leukocyte migration</subject><subject>Leukocytes (granulocytic)</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Macrophages</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Biological</subject><subject>Neuroimaging</subject><subject>Neuropathology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Oxygen - administration &amp; dosage</subject><subject>Parenchyma</subject><subject>Pathology</subject><subject>Permeability</subject><subject>Platelet aggregation</subject><subject>Proteases</subject><subject>Reperfusion</subject><subject>Stroke</subject><issn>0001-6322</issn><issn>1432-0533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNUk1v1DAQjRCILoUfwAVF4tIeUsZ2EscXpFUFLdLycShny3Emu1557cVOVto_0N-N021LW4GEfBjZ894bz8zLsrcEzggA_xABSiAFEFoQ4HXBnmUzUjJaQMXY82wGkLI1o_QoexXjOt0oL6uX2RFltBaM8Fl2fbXC3OEY_E5FPVoV8tGZIVcxV3lEi3owO8xbFYLBkA8-33q73_iwXXk3aouJsAzKjdbr_YD5yY-v305z43pjh6AG4126JNaQyrRBGZerfkhCJuoVboxO2fUY9q-zF72yEd_cxuPs5-dPV-eXxeL7xZfz-aLQNZRD0VQtrwXlHYWGl0w1IEQrWEUZpMi5gK7nraKEIRFCo-4Eg46otgSEsuvZcfbxoLsd2w12Gl36pZXbYDYq7KVXRj7OOLOSS7-TrOINp5AETg8Cqye0y_lCTm9AK1I1gu1Iwp7cFgv-14hxkJvUNlqrHPoxSsJIVVMKUP8PlBJeN82k-v4JdO3H4NLUblCMsJKLP6ilsijTPnxqR0-icn4zr6bmLKHO_oJKp5t24x2mNeJjAjkQdPAxBuzvZ0BATp6UB0_KZDU5eVJOnHcPZ37PuDNhAtADIKaUW2J40NE_VX8DbfDrFQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Enzmann, Gaby</creator><creator>Mysiorek, Caroline</creator><creator>Gorina, Roser</creator><creator>Cheng, Yu-Jung</creator><creator>Ghavampour, Sharang</creator><creator>Hannocks, Melanie-Jane</creator><creator>Prinz, Vincent</creator><creator>Dirnagl, Ulrich</creator><creator>Endres, Matthias</creator><creator>Prinz, Marco</creator><creator>Beschorner, Rudi</creator><creator>Harter, Patrick N.</creator><creator>Mittelbronn, Michel</creator><creator>Engelhardt, Britta</creator><creator>Sorokin, Lydia</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2338-8821</orcidid></search><sort><creationdate>20130301</creationdate><title>The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury</title><author>Enzmann, Gaby ; Mysiorek, Caroline ; Gorina, Roser ; Cheng, Yu-Jung ; Ghavampour, Sharang ; Hannocks, Melanie-Jane ; Prinz, Vincent ; Dirnagl, Ulrich ; Endres, Matthias ; Prinz, Marco ; Beschorner, Rudi ; Harter, Patrick N. ; Mittelbronn, Michel ; Engelhardt, Britta ; Sorokin, Lydia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-85b76927d208743a8099b9352309b97790df7ba213e199cecd930d1ab40e04df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Antigens, Ly - metabolism</topic><topic>Basement membranes</topic><topic>Blood Vessels - pathology</topic><topic>Blood Vessels - physiopathology</topic><topic>Blood-Brain Barrier - pathology</topic><topic>Blood-Brain Barrier - physiopathology</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain injury</topic><topic>Cell adhesion molecules</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell death</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Cerebral blood flow</topic><topic>Cerebral infarction</topic><topic>Confocal microscopy</topic><topic>Dextrose</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Endothelium - pathology</topic><topic>Functional Laterality</topic><topic>Gene Expression Regulation - physiology</topic><topic>Glucose</topic><topic>Glucose - deficiency</topic><topic>Glucose metabolism</topic><topic>Granulocytes</topic><topic>Granulocytes - pathology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Infarction, Middle Cerebral Artery - immunology</topic><topic>Infarction, Middle Cerebral Artery - pathology</topic><topic>Ischemia</topic><topic>Leukocyte migration</topic><topic>Leukocytes (granulocytic)</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Macrophages</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Biological</topic><topic>Neuroimaging</topic><topic>Neuropathology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Oxygen - administration &amp; dosage</topic><topic>Parenchyma</topic><topic>Pathology</topic><topic>Permeability</topic><topic>Platelet aggregation</topic><topic>Proteases</topic><topic>Reperfusion</topic><topic>Stroke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enzmann, Gaby</creatorcontrib><creatorcontrib>Mysiorek, Caroline</creatorcontrib><creatorcontrib>Gorina, Roser</creatorcontrib><creatorcontrib>Cheng, Yu-Jung</creatorcontrib><creatorcontrib>Ghavampour, Sharang</creatorcontrib><creatorcontrib>Hannocks, Melanie-Jane</creatorcontrib><creatorcontrib>Prinz, Vincent</creatorcontrib><creatorcontrib>Dirnagl, Ulrich</creatorcontrib><creatorcontrib>Endres, Matthias</creatorcontrib><creatorcontrib>Prinz, Marco</creatorcontrib><creatorcontrib>Beschorner, Rudi</creatorcontrib><creatorcontrib>Harter, Patrick N.</creatorcontrib><creatorcontrib>Mittelbronn, Michel</creatorcontrib><creatorcontrib>Engelhardt, Britta</creatorcontrib><creatorcontrib>Sorokin, Lydia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta neuropathologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enzmann, Gaby</au><au>Mysiorek, Caroline</au><au>Gorina, Roser</au><au>Cheng, Yu-Jung</au><au>Ghavampour, Sharang</au><au>Hannocks, Melanie-Jane</au><au>Prinz, Vincent</au><au>Dirnagl, Ulrich</au><au>Endres, Matthias</au><au>Prinz, Marco</au><au>Beschorner, Rudi</au><au>Harter, Patrick N.</au><au>Mittelbronn, Michel</au><au>Engelhardt, Britta</au><au>Sorokin, Lydia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury</atitle><jtitle>Acta neuropathologica</jtitle><stitle>Acta Neuropathol</stitle><addtitle>Acta Neuropathol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>125</volume><issue>3</issue><spage>395</spage><epage>412</epage><pages>395-412</pages><issn>0001-6322</issn><eissn>1432-0533</eissn><abstract>The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23269317</pmid><doi>10.1007/s00401-012-1076-3</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2338-8821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-6322
ispartof Acta neuropathologica, 2013-03, Vol.125 (3), p.395-412
issn 0001-6322
1432-0533
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3578720
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Antigens, CD - metabolism
Antigens, Ly - metabolism
Basement membranes
Blood Vessels - pathology
Blood Vessels - physiopathology
Blood-Brain Barrier - pathology
Blood-Brain Barrier - physiopathology
Brain
Brain - pathology
Brain injury
Cell adhesion molecules
Cell Adhesion Molecules - metabolism
Cell death
Cells, Cultured
Central nervous system
Cerebral blood flow
Cerebral infarction
Confocal microscopy
Dextrose
Disease Models, Animal
Endothelial cells
Endothelium - pathology
Functional Laterality
Gene Expression Regulation - physiology
Glucose
Glucose - deficiency
Glucose metabolism
Granulocytes
Granulocytes - pathology
Humans
Hypoxia
Infarction, Middle Cerebral Artery - immunology
Infarction, Middle Cerebral Artery - pathology
Ischemia
Leukocyte migration
Leukocytes (granulocytic)
Life Sciences
Localization
Macrophages
Male
Medicine
Medicine & Public Health
Mice
Mice, Inbred C57BL
Models, Biological
Neuroimaging
Neuropathology
Neurosciences
Original Paper
Oxygen - administration & dosage
Parenchyma
Pathology
Permeability
Platelet aggregation
Proteases
Reperfusion
Stroke
title The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20neurovascular%20unit%20as%20a%20selective%20barrier%20to%20polymorphonuclear%20granulocyte%20(PMN)%20infiltration%20into%20the%20brain%20after%20ischemic%20injury&rft.jtitle=Acta%20neuropathologica&rft.au=Enzmann,%20Gaby&rft.date=2013-03-01&rft.volume=125&rft.issue=3&rft.spage=395&rft.epage=412&rft.pages=395-412&rft.issn=0001-6322&rft.eissn=1432-0533&rft_id=info:doi/10.1007/s00401-012-1076-3&rft_dat=%3Cgale_pubme%3EA352308673%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312313479&rft_id=info:pmid/23269317&rft_galeid=A352308673&rfr_iscdi=true