Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium

Chemoheterotrophic marine bacteria of the SAR11 clade are Earth’s most abundant organisms. Following the first cultivation of a SAR11 bacterium, ‘ Candidatus Pelagibacter ubique’ strain HTCC1062 ( Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2013-03, Vol.7 (3), p.592-602
Hauptverfasser: Carini, Paul, Steindler, Laura, Beszteri, Sara, Giovannoni, Stephen J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 3
container_start_page 592
container_title The ISME Journal
container_volume 7
creator Carini, Paul
Steindler, Laura
Beszteri, Sara
Giovannoni, Stephen J
description Chemoheterotrophic marine bacteria of the SAR11 clade are Earth’s most abundant organisms. Following the first cultivation of a SAR11 bacterium, ‘ Candidatus Pelagibacter ubique’ strain HTCC1062 ( Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds and glycine or serine. These requirements were linked to genome streamlining resulting from selection for efficient resource utilization in nutrient-limited ocean habitats. Here we report the first successful cultivation of Ca. P. ubique on a defined artificial seawater medium (AMS1), and an additional requirement for pyruvate or pyruvate precursors. Optimal growth was observed with the collective addition of inorganic macro- and micronutrients, vitamins, methionine, glycine and pyruvate. Methionine served as the sole sulfur source but methionine and glycine were not sufficient to support growth. Optimal cell yields were obtained when the stoichiometry between glycine and pyruvate was 1:4, and incomplete cell division was observed in cultures starved for pyruvate. Glucose and oxaloacetate could fully replace pyruvate, but not acetate, taurine or a variety of tricarboxylic acid cycle intermediates. Moreover, both glycine betaine and serine could substitute for glycine. Interestingly, glycolate partially restored growth in the absence of glycine. We propose that this is the result of the use of glycolate, a product of phytoplankton metabolism, as both a carbon source for respiration and as a precursor to glycine. These findings are important because they provide support for the hypothesis that some micro-organisms are challenging to cultivate because of unusual nutrient requirements caused by streamlining selection and gene loss. Our findings also illustrate unusual metabolic rearrangements that adapt these cells to extreme oligotrophy, and underscore the challenge of reconstructing metabolism from genome sequences in organisms that have non-canonical metabolic pathways.
doi_str_mv 10.1038/ismej.2012.122
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3578571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439217262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-9d26add8687f5016f797b4a8e43a94c667de45a0def7b69b5caa3b3c38c09ad33</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEoqWwZYkssWEzU__EdrJBQhFQpApYlLXl2DcZj5J4ajsFJBZ9DHi9PgkOU0YFIbHyle7nc--xT1E8JXhNMKtOXRxhu6aY0DWh9F5xTCQnK8kkvn-oBT0qHsW4xZhLIeTD4ogyXIsS0-Pi2_s5BQdTQgEuZxdgzHVEnQ-oD_5z2iDfobQBBF_S0kR-cL1Pwe826Ob6e6Mn66xOc0QfYdC9a7VJENDcussZbq5_oLOLpiFYUOQnpJGFzk1g0QjWzePj4kGnhwhPbs-T4tOb1xfN2er8w9t3zavzleFMpFVtqdDWVqKSHcdEdLKWbakrKJmuS5MtWSi5xllctqJuudGatcywyuBaW8ZOipd73d3c5skmWwx6ULvgRh2-Kq-d-rMzuY3q_ZViXFZckizw4lYg-OwrJjW6aGAY9AR-joqUrKZEUkH_j9KqLitRcpzR53-hWz-HKb_EQlWSYSrLTK33lAk-xgDdYW-C1ZIB9SsDaslAvrds8Oyu2wP--9MzcLoHYm5NPYQ7c_8t-RPMU8EN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288730274</pqid></control><display><type>article</type><title>Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Carini, Paul ; Steindler, Laura ; Beszteri, Sara ; Giovannoni, Stephen J</creator><creatorcontrib>Carini, Paul ; Steindler, Laura ; Beszteri, Sara ; Giovannoni, Stephen J</creatorcontrib><description>Chemoheterotrophic marine bacteria of the SAR11 clade are Earth’s most abundant organisms. Following the first cultivation of a SAR11 bacterium, ‘ Candidatus Pelagibacter ubique’ strain HTCC1062 ( Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds and glycine or serine. These requirements were linked to genome streamlining resulting from selection for efficient resource utilization in nutrient-limited ocean habitats. Here we report the first successful cultivation of Ca. P. ubique on a defined artificial seawater medium (AMS1), and an additional requirement for pyruvate or pyruvate precursors. Optimal growth was observed with the collective addition of inorganic macro- and micronutrients, vitamins, methionine, glycine and pyruvate. Methionine served as the sole sulfur source but methionine and glycine were not sufficient to support growth. Optimal cell yields were obtained when the stoichiometry between glycine and pyruvate was 1:4, and incomplete cell division was observed in cultures starved for pyruvate. Glucose and oxaloacetate could fully replace pyruvate, but not acetate, taurine or a variety of tricarboxylic acid cycle intermediates. Moreover, both glycine betaine and serine could substitute for glycine. Interestingly, glycolate partially restored growth in the absence of glycine. We propose that this is the result of the use of glycolate, a product of phytoplankton metabolism, as both a carbon source for respiration and as a precursor to glycine. These findings are important because they provide support for the hypothesis that some micro-organisms are challenging to cultivate because of unusual nutrient requirements caused by streamlining selection and gene loss. Our findings also illustrate unusual metabolic rearrangements that adapt these cells to extreme oligotrophy, and underscore the challenge of reconstructing metabolism from genome sequences in organisms that have non-canonical metabolic pathways.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2012.122</identifier><identifier>PMID: 23096402</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/41/1969 ; 631/326/41/2482 ; 631/326/41/2535 ; Alphaproteobacteria - classification ; Alphaproteobacteria - genetics ; Alphaproteobacteria - growth &amp; development ; Alphaproteobacteria - metabolism ; Artificial seawater ; Biomedical and Life Sciences ; Carbon sources ; Cultivation ; Culture Media - chemistry ; Ecology ; Evolutionary Biology ; Life Sciences ; Metabolic Networks and Pathways - genetics ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Micronutrients ; Nutrient loss ; Nutrient requirements ; Nutrient utilization ; Nutritional requirements ; Oligotrophy ; Original ; original-article ; Phytoplankton ; Pyruvic Acid - metabolism ; Respiration ; Seawater ; Seawater - microbiology ; Sulfur ; Sulfur - metabolism ; Vitamins</subject><ispartof>The ISME Journal, 2013-03, Vol.7 (3), p.592-602</ispartof><rights>International Society for Microbial Ecology 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-9d26add8687f5016f797b4a8e43a94c667de45a0def7b69b5caa3b3c38c09ad33</citedby><cites>FETCH-LOGICAL-c536t-9d26add8687f5016f797b4a8e43a94c667de45a0def7b69b5caa3b3c38c09ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578571/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578571/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23096402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carini, Paul</creatorcontrib><creatorcontrib>Steindler, Laura</creatorcontrib><creatorcontrib>Beszteri, Sara</creatorcontrib><creatorcontrib>Giovannoni, Stephen J</creatorcontrib><title>Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Chemoheterotrophic marine bacteria of the SAR11 clade are Earth’s most abundant organisms. Following the first cultivation of a SAR11 bacterium, ‘ Candidatus Pelagibacter ubique’ strain HTCC1062 ( Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds and glycine or serine. These requirements were linked to genome streamlining resulting from selection for efficient resource utilization in nutrient-limited ocean habitats. Here we report the first successful cultivation of Ca. P. ubique on a defined artificial seawater medium (AMS1), and an additional requirement for pyruvate or pyruvate precursors. Optimal growth was observed with the collective addition of inorganic macro- and micronutrients, vitamins, methionine, glycine and pyruvate. Methionine served as the sole sulfur source but methionine and glycine were not sufficient to support growth. Optimal cell yields were obtained when the stoichiometry between glycine and pyruvate was 1:4, and incomplete cell division was observed in cultures starved for pyruvate. Glucose and oxaloacetate could fully replace pyruvate, but not acetate, taurine or a variety of tricarboxylic acid cycle intermediates. Moreover, both glycine betaine and serine could substitute for glycine. Interestingly, glycolate partially restored growth in the absence of glycine. We propose that this is the result of the use of glycolate, a product of phytoplankton metabolism, as both a carbon source for respiration and as a precursor to glycine. These findings are important because they provide support for the hypothesis that some micro-organisms are challenging to cultivate because of unusual nutrient requirements caused by streamlining selection and gene loss. Our findings also illustrate unusual metabolic rearrangements that adapt these cells to extreme oligotrophy, and underscore the challenge of reconstructing metabolism from genome sequences in organisms that have non-canonical metabolic pathways.</description><subject>631/326/41/1969</subject><subject>631/326/41/2482</subject><subject>631/326/41/2535</subject><subject>Alphaproteobacteria - classification</subject><subject>Alphaproteobacteria - genetics</subject><subject>Alphaproteobacteria - growth &amp; development</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Artificial seawater</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon sources</subject><subject>Cultivation</subject><subject>Culture Media - chemistry</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Micronutrients</subject><subject>Nutrient loss</subject><subject>Nutrient requirements</subject><subject>Nutrient utilization</subject><subject>Nutritional requirements</subject><subject>Oligotrophy</subject><subject>Original</subject><subject>original-article</subject><subject>Phytoplankton</subject><subject>Pyruvic Acid - metabolism</subject><subject>Respiration</subject><subject>Seawater</subject><subject>Seawater - microbiology</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Vitamins</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks1u1DAUhSMEoqWwZYkssWEzU__EdrJBQhFQpApYlLXl2DcZj5J4ajsFJBZ9DHi9PgkOU0YFIbHyle7nc--xT1E8JXhNMKtOXRxhu6aY0DWh9F5xTCQnK8kkvn-oBT0qHsW4xZhLIeTD4ogyXIsS0-Pi2_s5BQdTQgEuZxdgzHVEnQ-oD_5z2iDfobQBBF_S0kR-cL1Pwe826Ob6e6Mn66xOc0QfYdC9a7VJENDcussZbq5_oLOLpiFYUOQnpJGFzk1g0QjWzePj4kGnhwhPbs-T4tOb1xfN2er8w9t3zavzleFMpFVtqdDWVqKSHcdEdLKWbakrKJmuS5MtWSi5xllctqJuudGatcywyuBaW8ZOipd73d3c5skmWwx6ULvgRh2-Kq-d-rMzuY3q_ZViXFZckizw4lYg-OwrJjW6aGAY9AR-joqUrKZEUkH_j9KqLitRcpzR53-hWz-HKb_EQlWSYSrLTK33lAk-xgDdYW-C1ZIB9SsDaslAvrds8Oyu2wP--9MzcLoHYm5NPYQ7c_8t-RPMU8EN</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Carini, Paul</creator><creator>Steindler, Laura</creator><creator>Beszteri, Sara</creator><creator>Giovannoni, Stephen J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium</title><author>Carini, Paul ; Steindler, Laura ; Beszteri, Sara ; Giovannoni, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-9d26add8687f5016f797b4a8e43a94c667de45a0def7b69b5caa3b3c38c09ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/326/41/1969</topic><topic>631/326/41/2482</topic><topic>631/326/41/2535</topic><topic>Alphaproteobacteria - classification</topic><topic>Alphaproteobacteria - genetics</topic><topic>Alphaproteobacteria - growth &amp; development</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Artificial seawater</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon sources</topic><topic>Cultivation</topic><topic>Culture Media - chemistry</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Micronutrients</topic><topic>Nutrient loss</topic><topic>Nutrient requirements</topic><topic>Nutrient utilization</topic><topic>Nutritional requirements</topic><topic>Oligotrophy</topic><topic>Original</topic><topic>original-article</topic><topic>Phytoplankton</topic><topic>Pyruvic Acid - metabolism</topic><topic>Respiration</topic><topic>Seawater</topic><topic>Seawater - microbiology</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Vitamins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carini, Paul</creatorcontrib><creatorcontrib>Steindler, Laura</creatorcontrib><creatorcontrib>Beszteri, Sara</creatorcontrib><creatorcontrib>Giovannoni, Stephen J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carini, Paul</au><au>Steindler, Laura</au><au>Beszteri, Sara</au><au>Giovannoni, Stephen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>7</volume><issue>3</issue><spage>592</spage><epage>602</epage><pages>592-602</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Chemoheterotrophic marine bacteria of the SAR11 clade are Earth’s most abundant organisms. Following the first cultivation of a SAR11 bacterium, ‘ Candidatus Pelagibacter ubique’ strain HTCC1062 ( Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds and glycine or serine. These requirements were linked to genome streamlining resulting from selection for efficient resource utilization in nutrient-limited ocean habitats. Here we report the first successful cultivation of Ca. P. ubique on a defined artificial seawater medium (AMS1), and an additional requirement for pyruvate or pyruvate precursors. Optimal growth was observed with the collective addition of inorganic macro- and micronutrients, vitamins, methionine, glycine and pyruvate. Methionine served as the sole sulfur source but methionine and glycine were not sufficient to support growth. Optimal cell yields were obtained when the stoichiometry between glycine and pyruvate was 1:4, and incomplete cell division was observed in cultures starved for pyruvate. Glucose and oxaloacetate could fully replace pyruvate, but not acetate, taurine or a variety of tricarboxylic acid cycle intermediates. Moreover, both glycine betaine and serine could substitute for glycine. Interestingly, glycolate partially restored growth in the absence of glycine. We propose that this is the result of the use of glycolate, a product of phytoplankton metabolism, as both a carbon source for respiration and as a precursor to glycine. These findings are important because they provide support for the hypothesis that some micro-organisms are challenging to cultivate because of unusual nutrient requirements caused by streamlining selection and gene loss. Our findings also illustrate unusual metabolic rearrangements that adapt these cells to extreme oligotrophy, and underscore the challenge of reconstructing metabolism from genome sequences in organisms that have non-canonical metabolic pathways.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23096402</pmid><doi>10.1038/ismej.2012.122</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2013-03, Vol.7 (3), p.592-602
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3578571
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 631/326/41/1969
631/326/41/2482
631/326/41/2535
Alphaproteobacteria - classification
Alphaproteobacteria - genetics
Alphaproteobacteria - growth & development
Alphaproteobacteria - metabolism
Artificial seawater
Biomedical and Life Sciences
Carbon sources
Cultivation
Culture Media - chemistry
Ecology
Evolutionary Biology
Life Sciences
Metabolic Networks and Pathways - genetics
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Micronutrients
Nutrient loss
Nutrient requirements
Nutrient utilization
Nutritional requirements
Oligotrophy
Original
original-article
Phytoplankton
Pyruvic Acid - metabolism
Respiration
Seawater
Seawater - microbiology
Sulfur
Sulfur - metabolism
Vitamins
title Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutrient%20requirements%20for%20growth%20of%20the%20extreme%20oligotroph%20%E2%80%98Candidatus%20Pelagibacter%20ubique%E2%80%99%20HTCC1062%20on%20a%20defined%20medium&rft.jtitle=The%20ISME%20Journal&rft.au=Carini,%20Paul&rft.date=2013-03-01&rft.volume=7&rft.issue=3&rft.spage=592&rft.epage=602&rft.pages=592-602&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2012.122&rft_dat=%3Cproquest_pubme%3E1439217262%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288730274&rft_id=info:pmid/23096402&rfr_iscdi=true