Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster
Brian Oliver, Jason Lieb, Christine Disteche and colleagues present an analysis of expression data in mammals, C. elegans and Drosophila . They conclude that dosage compensation corrects the imbalance in the number of X chromosomes relative to autosomes by upregulating X-linked genes in both males a...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2011-12, Vol.43 (12), p.1179-1185 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1185 |
---|---|
container_issue | 12 |
container_start_page | 1179 |
container_title | Nature genetics |
container_volume | 43 |
creator | Oliver, Brian Lieb, Jason D Disteche, Christine M Deng, Xinxian Hiatt, Joseph B Nguyen, Di Kim Ercan, Sevinc Sturgill, David Hillier, LaDeana W Schlesinger, Felix Davis, Carrie A Reinke, Valerie J Gingeras, Thomas R Shendure, Jay Waterston, Robert H |
description | Brian Oliver, Jason Lieb, Christine Disteche and colleagues present an analysis of expression data in mammals,
C. elegans
and
Drosophila
. They conclude that dosage compensation corrects the imbalance in the number of X chromosomes relative to autosomes by upregulating X-linked genes in both males and females.
Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals,
C. elegans
and
Drosophila
. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome. |
doi_str_mv | 10.1038/ng.948 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3576853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A274228319</galeid><sourcerecordid>A274228319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-db8b65bf6a55f79ed9bbf0472ddea51ad53169d73d74999512885ac8ecfc7b4d3</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEoqXAEyBkgThJZLGTOHFukKqlQKVKlTiJO2tiT7JuE3uxk6q95M1x2WXbBYSQLzzyfPPbnn-S5D6jM0Zz8cp2s7oQN5JdxosyZRUTN2NMS5YWNC93kjshnFDKioKK28lOllFWV4LtJt8PzoxGq5C0zhPlhiXaAKPzF2RaeuymHkbjLHEtwfN4EAJq8jXtjT2NQYcWAzGWDDAM0IeXZA5onV9Ao81oAsEeO7CBgNXkjXfBLRemBzJgD9Z1EEb0d5NbbSzFe-t9L_n89uDT_H16dPzucL5_lKqyyMdUN6IpedOWwHlb1ajrpmlpUWVaI3AGmuesrHWV66qo65qzTAgOSqBqVdUUOt9LXq90l1MzoFZoRw-9XHozgL-QDozczlizkJ07kzmvSsHzKPBsLeDdtwnDKAcTFPbxK-imIGtacl5RmkXy-T_J6FghsmhSHdFHv6EnbvI2NkLWLOPRwbqM0OMV1EGP0tjWxQeqS025n1VFlon8p9TsL1RcGgejnMXWxPOtghdbBZEZ8XzsYApBHn788P_s8Zdt9umKVdHx4LHdNJnRy78LaTsZpzWCD69bssF-jWcEnqwBCAr61oNVJlxxPBOc02vWhJiyHfqrLv5x5YMVaWGcPG6k1ukfM-UI7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912510696</pqid></control><display><type>article</type><title>Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Oliver, Brian ; Lieb, Jason D ; Disteche, Christine M ; Deng, Xinxian ; Hiatt, Joseph B ; Nguyen, Di Kim ; Ercan, Sevinc ; Sturgill, David ; Hillier, LaDeana W ; Schlesinger, Felix ; Davis, Carrie A ; Reinke, Valerie J ; Gingeras, Thomas R ; Shendure, Jay ; Waterston, Robert H</creator><creatorcontrib>Oliver, Brian ; Lieb, Jason D ; Disteche, Christine M ; Deng, Xinxian ; Hiatt, Joseph B ; Nguyen, Di Kim ; Ercan, Sevinc ; Sturgill, David ; Hillier, LaDeana W ; Schlesinger, Felix ; Davis, Carrie A ; Reinke, Valerie J ; Gingeras, Thomas R ; Shendure, Jay ; Waterston, Robert H</creatorcontrib><description>Brian Oliver, Jason Lieb, Christine Disteche and colleagues present an analysis of expression data in mammals,
C. elegans
and
Drosophila
. They conclude that dosage compensation corrects the imbalance in the number of X chromosomes relative to autosomes by upregulating X-linked genes in both males and females.
Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals,
C. elegans
and
Drosophila
. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.948</identifier><identifier>PMID: 22019781</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/176/1433 ; 631/208/200 ; Agriculture ; analysis ; Animal Genetics and Genomics ; Animal species ; Animals ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Cancer Research ; Cell Line ; Chromosomes ; Compensation ; Dosage Compensation, Genetic ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Function ; Genes, X-Linked ; Genetic aspects ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Human Genetics ; Humans ; Male ; Mammals ; Mice ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Ovary - metabolism ; Physiological aspects ; Proteins ; RNA Polymerase II - metabolism ; Studies ; Testis - metabolism ; Transcription, Genetic ; Up-Regulation ; X chromosome ; X Chromosome - genetics</subject><ispartof>Nature genetics, 2011-12, Vol.43 (12), p.1179-1185</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2011</rights><rights>2011 Nature America, Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-db8b65bf6a55f79ed9bbf0472ddea51ad53169d73d74999512885ac8ecfc7b4d3</citedby><cites>FETCH-LOGICAL-c643t-db8b65bf6a55f79ed9bbf0472ddea51ad53169d73d74999512885ac8ecfc7b4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.948$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.948$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,2725,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25285503$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22019781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, Brian</creatorcontrib><creatorcontrib>Lieb, Jason D</creatorcontrib><creatorcontrib>Disteche, Christine M</creatorcontrib><creatorcontrib>Deng, Xinxian</creatorcontrib><creatorcontrib>Hiatt, Joseph B</creatorcontrib><creatorcontrib>Nguyen, Di Kim</creatorcontrib><creatorcontrib>Ercan, Sevinc</creatorcontrib><creatorcontrib>Sturgill, David</creatorcontrib><creatorcontrib>Hillier, LaDeana W</creatorcontrib><creatorcontrib>Schlesinger, Felix</creatorcontrib><creatorcontrib>Davis, Carrie A</creatorcontrib><creatorcontrib>Reinke, Valerie J</creatorcontrib><creatorcontrib>Gingeras, Thomas R</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><creatorcontrib>Waterston, Robert H</creatorcontrib><title>Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Brian Oliver, Jason Lieb, Christine Disteche and colleagues present an analysis of expression data in mammals,
C. elegans
and
Drosophila
. They conclude that dosage compensation corrects the imbalance in the number of X chromosomes relative to autosomes by upregulating X-linked genes in both males and females.
Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals,
C. elegans
and
Drosophila
. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.</description><subject>631/208/176/1433</subject><subject>631/208/200</subject><subject>Agriculture</subject><subject>analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Animal species</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Chromosomes</subject><subject>Compensation</subject><subject>Dosage Compensation, Genetic</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Function</subject><subject>Genes, X-Linked</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Mammals</subject><subject>Mice</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Organ Specificity</subject><subject>Ovary - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>RNA Polymerase II - metabolism</subject><subject>Studies</subject><subject>Testis - metabolism</subject><subject>Transcription, Genetic</subject><subject>Up-Regulation</subject><subject>X chromosome</subject><subject>X Chromosome - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkttu1DAQhiMEoqXAEyBkgThJZLGTOHFukKqlQKVKlTiJO2tiT7JuE3uxk6q95M1x2WXbBYSQLzzyfPPbnn-S5D6jM0Zz8cp2s7oQN5JdxosyZRUTN2NMS5YWNC93kjshnFDKioKK28lOllFWV4LtJt8PzoxGq5C0zhPlhiXaAKPzF2RaeuymHkbjLHEtwfN4EAJq8jXtjT2NQYcWAzGWDDAM0IeXZA5onV9Ao81oAsEeO7CBgNXkjXfBLRemBzJgD9Z1EEb0d5NbbSzFe-t9L_n89uDT_H16dPzucL5_lKqyyMdUN6IpedOWwHlb1ajrpmlpUWVaI3AGmuesrHWV66qo65qzTAgOSqBqVdUUOt9LXq90l1MzoFZoRw-9XHozgL-QDozczlizkJ07kzmvSsHzKPBsLeDdtwnDKAcTFPbxK-imIGtacl5RmkXy-T_J6FghsmhSHdFHv6EnbvI2NkLWLOPRwbqM0OMV1EGP0tjWxQeqS025n1VFlon8p9TsL1RcGgejnMXWxPOtghdbBZEZ8XzsYApBHn788P_s8Zdt9umKVdHx4LHdNJnRy78LaTsZpzWCD69bssF-jWcEnqwBCAr61oNVJlxxPBOc02vWhJiyHfqrLv5x5YMVaWGcPG6k1ukfM-UI7Q</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Oliver, Brian</creator><creator>Lieb, Jason D</creator><creator>Disteche, Christine M</creator><creator>Deng, Xinxian</creator><creator>Hiatt, Joseph B</creator><creator>Nguyen, Di Kim</creator><creator>Ercan, Sevinc</creator><creator>Sturgill, David</creator><creator>Hillier, LaDeana W</creator><creator>Schlesinger, Felix</creator><creator>Davis, Carrie A</creator><creator>Reinke, Valerie J</creator><creator>Gingeras, Thomas R</creator><creator>Shendure, Jay</creator><creator>Waterston, Robert H</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster</title><author>Oliver, Brian ; Lieb, Jason D ; Disteche, Christine M ; Deng, Xinxian ; Hiatt, Joseph B ; Nguyen, Di Kim ; Ercan, Sevinc ; Sturgill, David ; Hillier, LaDeana W ; Schlesinger, Felix ; Davis, Carrie A ; Reinke, Valerie J ; Gingeras, Thomas R ; Shendure, Jay ; Waterston, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-db8b65bf6a55f79ed9bbf0472ddea51ad53169d73d74999512885ac8ecfc7b4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/208/176/1433</topic><topic>631/208/200</topic><topic>Agriculture</topic><topic>analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Animal species</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Chromosomes</topic><topic>Compensation</topic><topic>Dosage Compensation, Genetic</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Function</topic><topic>Genes, X-Linked</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Mammals</topic><topic>Mice</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Organ Specificity</topic><topic>Ovary - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>RNA Polymerase II - metabolism</topic><topic>Studies</topic><topic>Testis - metabolism</topic><topic>Transcription, Genetic</topic><topic>Up-Regulation</topic><topic>X chromosome</topic><topic>X Chromosome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, Brian</creatorcontrib><creatorcontrib>Lieb, Jason D</creatorcontrib><creatorcontrib>Disteche, Christine M</creatorcontrib><creatorcontrib>Deng, Xinxian</creatorcontrib><creatorcontrib>Hiatt, Joseph B</creatorcontrib><creatorcontrib>Nguyen, Di Kim</creatorcontrib><creatorcontrib>Ercan, Sevinc</creatorcontrib><creatorcontrib>Sturgill, David</creatorcontrib><creatorcontrib>Hillier, LaDeana W</creatorcontrib><creatorcontrib>Schlesinger, Felix</creatorcontrib><creatorcontrib>Davis, Carrie A</creatorcontrib><creatorcontrib>Reinke, Valerie J</creatorcontrib><creatorcontrib>Gingeras, Thomas R</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><creatorcontrib>Waterston, Robert H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, Brian</au><au>Lieb, Jason D</au><au>Disteche, Christine M</au><au>Deng, Xinxian</au><au>Hiatt, Joseph B</au><au>Nguyen, Di Kim</au><au>Ercan, Sevinc</au><au>Sturgill, David</au><au>Hillier, LaDeana W</au><au>Schlesinger, Felix</au><au>Davis, Carrie A</au><au>Reinke, Valerie J</au><au>Gingeras, Thomas R</au><au>Shendure, Jay</au><au>Waterston, Robert H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>43</volume><issue>12</issue><spage>1179</spage><epage>1185</epage><pages>1179-1185</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>Brian Oliver, Jason Lieb, Christine Disteche and colleagues present an analysis of expression data in mammals,
C. elegans
and
Drosophila
. They conclude that dosage compensation corrects the imbalance in the number of X chromosomes relative to autosomes by upregulating X-linked genes in both males and females.
Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals,
C. elegans
and
Drosophila
. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22019781</pmid><doi>10.1038/ng.948</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2011-12, Vol.43 (12), p.1179-1185 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3576853 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/208/176/1433 631/208/200 Agriculture analysis Animal Genetics and Genomics Animal species Animals Biological and medical sciences Biomedical and Life Sciences Biomedicine Caenorhabditis elegans Caenorhabditis elegans - genetics Cancer Research Cell Line Chromosomes Compensation Dosage Compensation, Genetic Drosophila Drosophila melanogaster Drosophila melanogaster - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Female Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Profiling Gene Expression Regulation Gene Function Genes, X-Linked Genetic aspects Genetics Genetics of eukaryotes. Biological and molecular evolution Human Genetics Humans Male Mammals Mice Oligonucleotide Array Sequence Analysis Organ Specificity Ovary - metabolism Physiological aspects Proteins RNA Polymerase II - metabolism Studies Testis - metabolism Transcription, Genetic Up-Regulation X chromosome X Chromosome - genetics |
title | Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20compensatory%20upregulation%20of%20expressed%20X-linked%20genes%20in%20mammals,%20Caenorhabditis%20elegans%20and%20Drosophila%20melanogaster&rft.jtitle=Nature%20genetics&rft.au=Oliver,%20Brian&rft.date=2011-12-01&rft.volume=43&rft.issue=12&rft.spage=1179&rft.epage=1185&rft.pages=1179-1185&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng.948&rft_dat=%3Cgale_pubme%3EA274228319%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912510696&rft_id=info:pmid/22019781&rft_galeid=A274228319&rfr_iscdi=true |