Role for the obesity-related FTO gene in the cellular sensing of amino acids
SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-02, Vol.110 (7), p.2557-2562 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2562 |
---|---|
container_issue | 7 |
container_start_page | 2557 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Gulati, Pawan Cheung, Man Ka Antrobus, Robin Church, Chris D. Harding, Heather P. Tung, Yi-Chun Loraine Rimmington, Debra Ma, Marcella Ron, David Lehner, Paul J. Ashcroft, Frances M. Cox, Roger D. Coll, Anthony P. O'Rahilly, Stephen Yeo, Giles S. H. |
description | SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown. We describe a role for FTO in the coupling of amino acid levels to mammalian target of rapamycin complex 1 signaling. These findings suggest that FTO may influence body composition through playing a role in cellular nutrient sensing. |
doi_str_mv | 10.1073/pnas.1222796110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3574930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41992376</jstor_id><sourcerecordid>41992376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-10e79723754a40a447e0f651e77391b75458bb7b7953e76d8f430c5521313a233</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotvCmRNgqRcuaWf8EduXSqiigLRSJWjPlpN1tlll7cVOkPrf43TLUrhwsuT3m6c38wh5g3CGoPj5Lrh8howxZWpEeEYWCAarWhh4ThYATFVaMHFEjnPeAICRGl6SI8a5NLWuF2T5LQ6edjHR8c7T2Pjcj_dV8oMb_Ype3VzTtQ-e9uFBb_0wTINLNPuQ-7CmsaNu24dIXduv8ivyonND9q8f3xNye_Xp5vJLtbz-_PXy47JqJeNjheCVUYwrKZwAJ4Ty0NUSvVLcYFO-pW4a1SgjuVf1SneCQyslQ47clewn5GLvu5uarV-1PozJDXaX-q1L9za63v6thP7OruNPy6UShkMx-PBokOKPyefRbvs8L-eCj1O2qIEjoubi_yjTSmstpSro6T_oJk4plEs8UKpGzutCne-pNsWck-8OuRHsXKqdS7V_Si0T756ue-B_t_gEmCcPdsVPWbZP9nYPbPIY04EQaEypYTZ4v9c7F61bpz7b2-8MsAZAgXVJ_QtrVbda</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287761336</pqid></control><display><type>article</type><title>Role for the obesity-related FTO gene in the cellular sensing of amino acids</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gulati, Pawan ; Cheung, Man Ka ; Antrobus, Robin ; Church, Chris D. ; Harding, Heather P. ; Tung, Yi-Chun Loraine ; Rimmington, Debra ; Ma, Marcella ; Ron, David ; Lehner, Paul J. ; Ashcroft, Frances M. ; Cox, Roger D. ; Coll, Anthony P. ; O'Rahilly, Stephen ; Yeo, Giles S. H.</creator><creatorcontrib>Gulati, Pawan ; Cheung, Man Ka ; Antrobus, Robin ; Church, Chris D. ; Harding, Heather P. ; Tung, Yi-Chun Loraine ; Rimmington, Debra ; Ma, Marcella ; Ron, David ; Lehner, Paul J. ; Ashcroft, Frances M. ; Cox, Roger D. ; Coll, Anthony P. ; O'Rahilly, Stephen ; Yeo, Giles S. H.</creatorcontrib><description>SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown. We describe a role for FTO in the coupling of amino acid levels to mammalian target of rapamycin complex 1 signaling. These findings suggest that FTO may influence body composition through playing a role in cellular nutrient sensing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1222796110</identifier><identifier>PMID: 23359686</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alpha-Ketoglutarate-Dependent Dioxygenase FTO ; Amino acids ; Amino Acids - metabolism ; Animals ; Antibodies ; Biological Sciences ; body composition ; Body Composition - genetics ; Body fat ; Cell extracts ; Cell Fractionation ; Chromatography, Liquid ; Electrophoresis, Polyacrylamide Gel ; Fibroblasts ; Food intake ; Fractionation ; gene overexpression ; growth retardation ; HEK293 Cells ; Humans ; Immunoprecipitation ; introns ; Messenger RNA ; Mice ; Mutation ; Obesity ; Obesity - genetics ; Polymorphism, Single Nucleotide - genetics ; Proteins - genetics ; Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rodents ; Signal Transduction - genetics ; single nucleotide polymorphism ; Tandem Mass Spectrometry ; TOR Serine-Threonine Kinases - metabolism ; Transfection ; Western blotting</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (7), p.2557-2562</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 12, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-10e79723754a40a447e0f651e77391b75458bb7b7953e76d8f430c5521313a233</citedby><cites>FETCH-LOGICAL-c523t-10e79723754a40a447e0f651e77391b75458bb7b7953e76d8f430c5521313a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41992376$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41992376$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23359686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gulati, Pawan</creatorcontrib><creatorcontrib>Cheung, Man Ka</creatorcontrib><creatorcontrib>Antrobus, Robin</creatorcontrib><creatorcontrib>Church, Chris D.</creatorcontrib><creatorcontrib>Harding, Heather P.</creatorcontrib><creatorcontrib>Tung, Yi-Chun Loraine</creatorcontrib><creatorcontrib>Rimmington, Debra</creatorcontrib><creatorcontrib>Ma, Marcella</creatorcontrib><creatorcontrib>Ron, David</creatorcontrib><creatorcontrib>Lehner, Paul J.</creatorcontrib><creatorcontrib>Ashcroft, Frances M.</creatorcontrib><creatorcontrib>Cox, Roger D.</creatorcontrib><creatorcontrib>Coll, Anthony P.</creatorcontrib><creatorcontrib>O'Rahilly, Stephen</creatorcontrib><creatorcontrib>Yeo, Giles S. H.</creatorcontrib><title>Role for the obesity-related FTO gene in the cellular sensing of amino acids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown. We describe a role for FTO in the coupling of amino acid levels to mammalian target of rapamycin complex 1 signaling. These findings suggest that FTO may influence body composition through playing a role in cellular nutrient sensing.</description><subject>Alpha-Ketoglutarate-Dependent Dioxygenase FTO</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>body composition</subject><subject>Body Composition - genetics</subject><subject>Body fat</subject><subject>Cell extracts</subject><subject>Cell Fractionation</subject><subject>Chromatography, Liquid</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Fibroblasts</subject><subject>Food intake</subject><subject>Fractionation</subject><subject>gene overexpression</subject><subject>growth retardation</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>introns</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mutation</subject><subject>Obesity</subject><subject>Obesity - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Rodents</subject><subject>Signal Transduction - genetics</subject><subject>single nucleotide polymorphism</subject><subject>Tandem Mass Spectrometry</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transfection</subject><subject>Western blotting</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EotvCmRNgqRcuaWf8EduXSqiigLRSJWjPlpN1tlll7cVOkPrf43TLUrhwsuT3m6c38wh5g3CGoPj5Lrh8howxZWpEeEYWCAarWhh4ThYATFVaMHFEjnPeAICRGl6SI8a5NLWuF2T5LQ6edjHR8c7T2Pjcj_dV8oMb_Ype3VzTtQ-e9uFBb_0wTINLNPuQ-7CmsaNu24dIXduv8ivyonND9q8f3xNye_Xp5vJLtbz-_PXy47JqJeNjheCVUYwrKZwAJ4Ty0NUSvVLcYFO-pW4a1SgjuVf1SneCQyslQ47clewn5GLvu5uarV-1PozJDXaX-q1L9za63v6thP7OruNPy6UShkMx-PBokOKPyefRbvs8L-eCj1O2qIEjoubi_yjTSmstpSro6T_oJk4plEs8UKpGzutCne-pNsWck-8OuRHsXKqdS7V_Si0T756ue-B_t_gEmCcPdsVPWbZP9nYPbPIY04EQaEypYTZ4v9c7F61bpz7b2-8MsAZAgXVJ_QtrVbda</recordid><startdate>20130212</startdate><enddate>20130212</enddate><creator>Gulati, Pawan</creator><creator>Cheung, Man Ka</creator><creator>Antrobus, Robin</creator><creator>Church, Chris D.</creator><creator>Harding, Heather P.</creator><creator>Tung, Yi-Chun Loraine</creator><creator>Rimmington, Debra</creator><creator>Ma, Marcella</creator><creator>Ron, David</creator><creator>Lehner, Paul J.</creator><creator>Ashcroft, Frances M.</creator><creator>Cox, Roger D.</creator><creator>Coll, Anthony P.</creator><creator>O'Rahilly, Stephen</creator><creator>Yeo, Giles S. H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130212</creationdate><title>Role for the obesity-related FTO gene in the cellular sensing of amino acids</title><author>Gulati, Pawan ; Cheung, Man Ka ; Antrobus, Robin ; Church, Chris D. ; Harding, Heather P. ; Tung, Yi-Chun Loraine ; Rimmington, Debra ; Ma, Marcella ; Ron, David ; Lehner, Paul J. ; Ashcroft, Frances M. ; Cox, Roger D. ; Coll, Anthony P. ; O'Rahilly, Stephen ; Yeo, Giles S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-10e79723754a40a447e0f651e77391b75458bb7b7953e76d8f430c5521313a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alpha-Ketoglutarate-Dependent Dioxygenase FTO</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>body composition</topic><topic>Body Composition - genetics</topic><topic>Body fat</topic><topic>Cell extracts</topic><topic>Cell Fractionation</topic><topic>Chromatography, Liquid</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Fibroblasts</topic><topic>Food intake</topic><topic>Fractionation</topic><topic>gene overexpression</topic><topic>growth retardation</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>introns</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mutation</topic><topic>Obesity</topic><topic>Obesity - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Rodents</topic><topic>Signal Transduction - genetics</topic><topic>single nucleotide polymorphism</topic><topic>Tandem Mass Spectrometry</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transfection</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulati, Pawan</creatorcontrib><creatorcontrib>Cheung, Man Ka</creatorcontrib><creatorcontrib>Antrobus, Robin</creatorcontrib><creatorcontrib>Church, Chris D.</creatorcontrib><creatorcontrib>Harding, Heather P.</creatorcontrib><creatorcontrib>Tung, Yi-Chun Loraine</creatorcontrib><creatorcontrib>Rimmington, Debra</creatorcontrib><creatorcontrib>Ma, Marcella</creatorcontrib><creatorcontrib>Ron, David</creatorcontrib><creatorcontrib>Lehner, Paul J.</creatorcontrib><creatorcontrib>Ashcroft, Frances M.</creatorcontrib><creatorcontrib>Cox, Roger D.</creatorcontrib><creatorcontrib>Coll, Anthony P.</creatorcontrib><creatorcontrib>O'Rahilly, Stephen</creatorcontrib><creatorcontrib>Yeo, Giles S. H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulati, Pawan</au><au>Cheung, Man Ka</au><au>Antrobus, Robin</au><au>Church, Chris D.</au><au>Harding, Heather P.</au><au>Tung, Yi-Chun Loraine</au><au>Rimmington, Debra</au><au>Ma, Marcella</au><au>Ron, David</au><au>Lehner, Paul J.</au><au>Ashcroft, Frances M.</au><au>Cox, Roger D.</au><au>Coll, Anthony P.</au><au>O'Rahilly, Stephen</au><au>Yeo, Giles S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role for the obesity-related FTO gene in the cellular sensing of amino acids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-02-12</date><risdate>2013</risdate><volume>110</volume><issue>7</issue><spage>2557</spage><epage>2562</epage><pages>2557-2562</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown. We describe a role for FTO in the coupling of amino acid levels to mammalian target of rapamycin complex 1 signaling. These findings suggest that FTO may influence body composition through playing a role in cellular nutrient sensing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23359686</pmid><doi>10.1073/pnas.1222796110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (7), p.2557-2562 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3574930 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alpha-Ketoglutarate-Dependent Dioxygenase FTO Amino acids Amino Acids - metabolism Animals Antibodies Biological Sciences body composition Body Composition - genetics Body fat Cell extracts Cell Fractionation Chromatography, Liquid Electrophoresis, Polyacrylamide Gel Fibroblasts Food intake Fractionation gene overexpression growth retardation HEK293 Cells Humans Immunoprecipitation introns Messenger RNA Mice Mutation Obesity Obesity - genetics Polymorphism, Single Nucleotide - genetics Proteins - genetics Proteins - metabolism Reverse Transcriptase Polymerase Chain Reaction Rodents Signal Transduction - genetics single nucleotide polymorphism Tandem Mass Spectrometry TOR Serine-Threonine Kinases - metabolism Transfection Western blotting |
title | Role for the obesity-related FTO gene in the cellular sensing of amino acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20for%20the%20obesity-related%20FTO%20gene%20in%20the%20cellular%20sensing%20of%20amino%20acids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gulati,%20Pawan&rft.date=2013-02-12&rft.volume=110&rft.issue=7&rft.spage=2557&rft.epage=2562&rft.pages=2557-2562&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1222796110&rft_dat=%3Cjstor_pubme%3E41992376%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1287761336&rft_id=info:pmid/23359686&rft_jstor_id=41992376&rfr_iscdi=true |