Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells

Human Cripto‐1 (CR‐1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR‐1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2013-06, Vol.228 (6), p.1174-1188
Hauptverfasser: Bianco, Caterina, Castro, Nadia P., Baraty, Christina, Rollman, Kelly, Held, Natalie, Rangel, Maria Cristina, Karasawa, Hideaki, Gonzales, Monica, Strizzi, Luigi, Salomon, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1188
container_issue 6
container_start_page 1174
container_title Journal of cellular physiology
container_volume 228
creator Bianco, Caterina
Castro, Nadia P.
Baraty, Christina
Rollman, Kelly
Held, Natalie
Rangel, Maria Cristina
Karasawa, Hideaki
Gonzales, Monica
Strizzi, Luigi
Salomon, David S.
description Human Cripto‐1 (CR‐1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR‐1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)‐1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR‐1 gene expression in NTERA‐2 human embryonal carcinoma cells and in breast cancer cells. CR‐1 expression in NTERA‐2 cells was positively regulated by LRH‐1 through direct binding to a DR0 element within the CR‐1 promoter, while GCNF strongly suppressed CR‐1 expression in these cells. In addition, the CR‐1 promoter was unmethylated in NTERA‐2 cells, while T47D, ZR75‐1, and MCF7 breast cancer cells showed high levels of CR‐1 promoter methylation and low CR‐1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR‐1 promoter and reactivated CR‐1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR‐1 was highly expressed in the majority of human breast tumors, suggesting that CR‐1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR‐1 gene expression and its critical role in the pathogenesis of human cancer. J. Cell. Physiol. 228: 1174–1188, 2013. © 2012 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jcp.24271
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3573215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920082421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5141-849cbd063a5b625769ec503eca2fff8bb2dbab7ccec02f9e6791e57669d63cc83</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdY_iR1vkKpAW1ApVQViadmem06GJA52As2eB8fTmY4AiZUX37lH1_dD6DklR5QQdrx2wxHLmaQP0IISJbNcFOwhWqSMZqrI6QF6EuOaEKIU54_RAeOUKZ6zBfp1DTdTa8bG99jXeDV1psdVaIbRZxTD7RAgxk1oZ9xPrgUTcAAHKQ8Rm36J316e4CH4zo8QcAfjat7pmn6ng86G2femveNtABNH7Ezv0oCDto1P0aPatBGe7d5D9OX03efqPLv4dPa-OrnIXEFzmpW5cnZJBDeFFayQQoErCAdnWF3XpbVsaY2VzoEjrFYgpKKQMKGWgjtX8kP0ZusdJtvB0kE_BtPqITSdCbP2ptF_J32z0jf-h-aF5IwWSfBqJwj--wRx1F0TN18wPfgpappzxXjJmUzoy3_QtZ9COkKiOJW5KHPCE_V6S7ngYwxQ75ehRG-61albfddtYl_8uf2evC8zAcdb4GfTwvx_k_5QXd0rs-1EE0e43U-Y8E0LyWWhv16eaVFdfZTX55U-5b8B8qHAEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317468403</pqid></control><display><type>article</type><title>Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Bianco, Caterina ; Castro, Nadia P. ; Baraty, Christina ; Rollman, Kelly ; Held, Natalie ; Rangel, Maria Cristina ; Karasawa, Hideaki ; Gonzales, Monica ; Strizzi, Luigi ; Salomon, David S.</creator><creatorcontrib>Bianco, Caterina ; Castro, Nadia P. ; Baraty, Christina ; Rollman, Kelly ; Held, Natalie ; Rangel, Maria Cristina ; Karasawa, Hideaki ; Gonzales, Monica ; Strizzi, Luigi ; Salomon, David S.</creatorcontrib><description>Human Cripto‐1 (CR‐1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR‐1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)‐1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR‐1 gene expression in NTERA‐2 human embryonal carcinoma cells and in breast cancer cells. CR‐1 expression in NTERA‐2 cells was positively regulated by LRH‐1 through direct binding to a DR0 element within the CR‐1 promoter, while GCNF strongly suppressed CR‐1 expression in these cells. In addition, the CR‐1 promoter was unmethylated in NTERA‐2 cells, while T47D, ZR75‐1, and MCF7 breast cancer cells showed high levels of CR‐1 promoter methylation and low CR‐1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR‐1 promoter and reactivated CR‐1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR‐1 was highly expressed in the majority of human breast tumors, suggesting that CR‐1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR‐1 gene expression and its critical role in the pathogenesis of human cancer. J. Cell. Physiol. 228: 1174–1188, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.24271</identifier><identifier>PMID: 23129342</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Azacitidine - analogs &amp; derivatives ; Azacitidine - pharmacology ; Binding Sites ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Carcinoma, Ductal, Breast - genetics ; Carcinoma, Ductal, Breast - metabolism ; Carcinoma, Ductal, Breast - pathology ; Carcinoma, Embryonal - genetics ; Carcinoma, Embryonal - metabolism ; Carcinoma, Embryonal - pathology ; Cell Movement ; Decitabine ; DNA Methylation - drug effects ; DNA Modification Methylases - antagonists &amp; inhibitors ; DNA Modification Methylases - metabolism ; Dose-Response Relationship, Drug ; Embryonal Carcinoma Stem Cells - metabolism ; Embryonal Carcinoma Stem Cells - pathology ; Embryonic growth stage ; Female ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Neoplastic ; Genes, Reporter ; GPI-Linked Proteins - genetics ; GPI-Linked Proteins - metabolism ; Histone Deacetylase Inhibitors - pharmacology ; Humans ; Hydroxamic Acids - pharmacology ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Luciferases - biosynthesis ; Luciferases - genetics ; MCF-7 Cells ; Methylation ; Neoplasm Invasiveness ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Nuclear Receptor Subfamily 6, Group A, Member 1 - genetics ; Nuclear Receptor Subfamily 6, Group A, Member 1 - metabolism ; Promoter Regions, Genetic ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; RNA Interference ; RNA, Messenger - metabolism ; Time Factors ; Tissue Array Analysis ; Transcription, Genetic ; Transfection ; Tretinoin - pharmacology ; Valproic Acid - pharmacology</subject><ispartof>Journal of cellular physiology, 2013-06, Vol.228 (6), p.1174-1188</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5141-849cbd063a5b625769ec503eca2fff8bb2dbab7ccec02f9e6791e57669d63cc83</citedby><cites>FETCH-LOGICAL-c5141-849cbd063a5b625769ec503eca2fff8bb2dbab7ccec02f9e6791e57669d63cc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.24271$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.24271$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23129342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianco, Caterina</creatorcontrib><creatorcontrib>Castro, Nadia P.</creatorcontrib><creatorcontrib>Baraty, Christina</creatorcontrib><creatorcontrib>Rollman, Kelly</creatorcontrib><creatorcontrib>Held, Natalie</creatorcontrib><creatorcontrib>Rangel, Maria Cristina</creatorcontrib><creatorcontrib>Karasawa, Hideaki</creatorcontrib><creatorcontrib>Gonzales, Monica</creatorcontrib><creatorcontrib>Strizzi, Luigi</creatorcontrib><creatorcontrib>Salomon, David S.</creatorcontrib><title>Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Human Cripto‐1 (CR‐1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR‐1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)‐1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR‐1 gene expression in NTERA‐2 human embryonal carcinoma cells and in breast cancer cells. CR‐1 expression in NTERA‐2 cells was positively regulated by LRH‐1 through direct binding to a DR0 element within the CR‐1 promoter, while GCNF strongly suppressed CR‐1 expression in these cells. In addition, the CR‐1 promoter was unmethylated in NTERA‐2 cells, while T47D, ZR75‐1, and MCF7 breast cancer cells showed high levels of CR‐1 promoter methylation and low CR‐1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR‐1 promoter and reactivated CR‐1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR‐1 was highly expressed in the majority of human breast tumors, suggesting that CR‐1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR‐1 gene expression and its critical role in the pathogenesis of human cancer. J. Cell. Physiol. 228: 1174–1188, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>Azacitidine - analogs &amp; derivatives</subject><subject>Azacitidine - pharmacology</subject><subject>Binding Sites</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Carcinoma, Ductal, Breast - genetics</subject><subject>Carcinoma, Ductal, Breast - metabolism</subject><subject>Carcinoma, Ductal, Breast - pathology</subject><subject>Carcinoma, Embryonal - genetics</subject><subject>Carcinoma, Embryonal - metabolism</subject><subject>Carcinoma, Embryonal - pathology</subject><subject>Cell Movement</subject><subject>Decitabine</subject><subject>DNA Methylation - drug effects</subject><subject>DNA Modification Methylases - antagonists &amp; inhibitors</subject><subject>DNA Modification Methylases - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Embryonal Carcinoma Stem Cells - metabolism</subject><subject>Embryonal Carcinoma Stem Cells - pathology</subject><subject>Embryonic growth stage</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes, Reporter</subject><subject>GPI-Linked Proteins - genetics</subject><subject>GPI-Linked Proteins - metabolism</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Luciferases - biosynthesis</subject><subject>Luciferases - genetics</subject><subject>MCF-7 Cells</subject><subject>Methylation</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Nuclear Receptor Subfamily 6, Group A, Member 1 - genetics</subject><subject>Nuclear Receptor Subfamily 6, Group A, Member 1 - metabolism</subject><subject>Promoter Regions, Genetic</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>Time Factors</subject><subject>Tissue Array Analysis</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Tretinoin - pharmacology</subject><subject>Valproic Acid - pharmacology</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdY_iR1vkKpAW1ApVQViadmem06GJA52As2eB8fTmY4AiZUX37lH1_dD6DklR5QQdrx2wxHLmaQP0IISJbNcFOwhWqSMZqrI6QF6EuOaEKIU54_RAeOUKZ6zBfp1DTdTa8bG99jXeDV1psdVaIbRZxTD7RAgxk1oZ9xPrgUTcAAHKQ8Rm36J316e4CH4zo8QcAfjat7pmn6ng86G2femveNtABNH7Ezv0oCDto1P0aPatBGe7d5D9OX03efqPLv4dPa-OrnIXEFzmpW5cnZJBDeFFayQQoErCAdnWF3XpbVsaY2VzoEjrFYgpKKQMKGWgjtX8kP0ZusdJtvB0kE_BtPqITSdCbP2ptF_J32z0jf-h-aF5IwWSfBqJwj--wRx1F0TN18wPfgpappzxXjJmUzoy3_QtZ9COkKiOJW5KHPCE_V6S7ngYwxQ75ehRG-61albfddtYl_8uf2evC8zAcdb4GfTwvx_k_5QXd0rs-1EE0e43U-Y8E0LyWWhv16eaVFdfZTX55U-5b8B8qHAEw</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Bianco, Caterina</creator><creator>Castro, Nadia P.</creator><creator>Baraty, Christina</creator><creator>Rollman, Kelly</creator><creator>Held, Natalie</creator><creator>Rangel, Maria Cristina</creator><creator>Karasawa, Hideaki</creator><creator>Gonzales, Monica</creator><creator>Strizzi, Luigi</creator><creator>Salomon, David S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>201306</creationdate><title>Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells</title><author>Bianco, Caterina ; Castro, Nadia P. ; Baraty, Christina ; Rollman, Kelly ; Held, Natalie ; Rangel, Maria Cristina ; Karasawa, Hideaki ; Gonzales, Monica ; Strizzi, Luigi ; Salomon, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5141-849cbd063a5b625769ec503eca2fff8bb2dbab7ccec02f9e6791e57669d63cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Azacitidine - analogs &amp; derivatives</topic><topic>Azacitidine - pharmacology</topic><topic>Binding Sites</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Carcinoma, Ductal, Breast - genetics</topic><topic>Carcinoma, Ductal, Breast - metabolism</topic><topic>Carcinoma, Ductal, Breast - pathology</topic><topic>Carcinoma, Embryonal - genetics</topic><topic>Carcinoma, Embryonal - metabolism</topic><topic>Carcinoma, Embryonal - pathology</topic><topic>Cell Movement</topic><topic>Decitabine</topic><topic>DNA Methylation - drug effects</topic><topic>DNA Modification Methylases - antagonists &amp; inhibitors</topic><topic>DNA Modification Methylases - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Embryonal Carcinoma Stem Cells - metabolism</topic><topic>Embryonal Carcinoma Stem Cells - pathology</topic><topic>Embryonic growth stage</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes, Reporter</topic><topic>GPI-Linked Proteins - genetics</topic><topic>GPI-Linked Proteins - metabolism</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Luciferases - biosynthesis</topic><topic>Luciferases - genetics</topic><topic>MCF-7 Cells</topic><topic>Methylation</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Nuclear Receptor Subfamily 6, Group A, Member 1 - genetics</topic><topic>Nuclear Receptor Subfamily 6, Group A, Member 1 - metabolism</topic><topic>Promoter Regions, Genetic</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>Time Factors</topic><topic>Tissue Array Analysis</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Tretinoin - pharmacology</topic><topic>Valproic Acid - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianco, Caterina</creatorcontrib><creatorcontrib>Castro, Nadia P.</creatorcontrib><creatorcontrib>Baraty, Christina</creatorcontrib><creatorcontrib>Rollman, Kelly</creatorcontrib><creatorcontrib>Held, Natalie</creatorcontrib><creatorcontrib>Rangel, Maria Cristina</creatorcontrib><creatorcontrib>Karasawa, Hideaki</creatorcontrib><creatorcontrib>Gonzales, Monica</creatorcontrib><creatorcontrib>Strizzi, Luigi</creatorcontrib><creatorcontrib>Salomon, David S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianco, Caterina</au><au>Castro, Nadia P.</au><au>Baraty, Christina</au><au>Rollman, Kelly</au><au>Held, Natalie</au><au>Rangel, Maria Cristina</au><au>Karasawa, Hideaki</au><au>Gonzales, Monica</au><au>Strizzi, Luigi</au><au>Salomon, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2013-06</date><risdate>2013</risdate><volume>228</volume><issue>6</issue><spage>1174</spage><epage>1188</epage><pages>1174-1188</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Human Cripto‐1 (CR‐1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR‐1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)‐1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR‐1 gene expression in NTERA‐2 human embryonal carcinoma cells and in breast cancer cells. CR‐1 expression in NTERA‐2 cells was positively regulated by LRH‐1 through direct binding to a DR0 element within the CR‐1 promoter, while GCNF strongly suppressed CR‐1 expression in these cells. In addition, the CR‐1 promoter was unmethylated in NTERA‐2 cells, while T47D, ZR75‐1, and MCF7 breast cancer cells showed high levels of CR‐1 promoter methylation and low CR‐1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR‐1 promoter and reactivated CR‐1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR‐1 was highly expressed in the majority of human breast tumors, suggesting that CR‐1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR‐1 gene expression and its critical role in the pathogenesis of human cancer. J. Cell. Physiol. 228: 1174–1188, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23129342</pmid><doi>10.1002/jcp.24271</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2013-06, Vol.228 (6), p.1174-1188
issn 0021-9541
1097-4652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3573215
source MEDLINE; Access via Wiley Online Library
subjects Azacitidine - analogs & derivatives
Azacitidine - pharmacology
Binding Sites
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Carcinoma, Ductal, Breast - genetics
Carcinoma, Ductal, Breast - metabolism
Carcinoma, Ductal, Breast - pathology
Carcinoma, Embryonal - genetics
Carcinoma, Embryonal - metabolism
Carcinoma, Embryonal - pathology
Cell Movement
Decitabine
DNA Methylation - drug effects
DNA Modification Methylases - antagonists & inhibitors
DNA Modification Methylases - metabolism
Dose-Response Relationship, Drug
Embryonal Carcinoma Stem Cells - metabolism
Embryonal Carcinoma Stem Cells - pathology
Embryonic growth stage
Female
Gene Expression Regulation, Developmental
Gene Expression Regulation, Neoplastic
Genes, Reporter
GPI-Linked Proteins - genetics
GPI-Linked Proteins - metabolism
Histone Deacetylase Inhibitors - pharmacology
Humans
Hydroxamic Acids - pharmacology
Intercellular Signaling Peptides and Proteins - genetics
Intercellular Signaling Peptides and Proteins - metabolism
Luciferases - biosynthesis
Luciferases - genetics
MCF-7 Cells
Methylation
Neoplasm Invasiveness
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Nuclear Receptor Subfamily 6, Group A, Member 1 - genetics
Nuclear Receptor Subfamily 6, Group A, Member 1 - metabolism
Promoter Regions, Genetic
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - metabolism
RNA Interference
RNA, Messenger - metabolism
Time Factors
Tissue Array Analysis
Transcription, Genetic
Transfection
Tretinoin - pharmacology
Valproic Acid - pharmacology
title Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20human%20Cripto-1%20expression%20by%20nuclear%20receptors%20and%20DNA%20promoter%20methylation%20in%20human%20embryonal%20and%20breast%20cancer%20cells&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Bianco,%20Caterina&rft.date=2013-06&rft.volume=228&rft.issue=6&rft.spage=1174&rft.epage=1188&rft.pages=1174-1188&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.24271&rft_dat=%3Cproquest_pubme%3E2920082421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317468403&rft_id=info:pmid/23129342&rfr_iscdi=true