Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus
► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulat...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular endocrinology 2013-01, Vol.365 (1), p.84-94 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 84 |
container_title | Molecular and cellular endocrinology |
container_volume | 365 |
creator | Chiappini, Franck Ramadoss, Preeti Vella, Kristen R. Cunha, Lucas L. Ye, Felix D. Stuart, Ronald C. Nillni, Eduardo A. Hollenberg, Anthony N. |
description | ► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family.
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family. |
doi_str_mv | 10.1016/j.mce.2012.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3572472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303720712004388</els_id><sourcerecordid>1283656468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhB3ABH8shYRzHdiIkJFi1FKkIqbRny3EmG6-SOLWzFfvv8WpLBRc4-Un-3tPMPEJeM8gZMPl-m48W8wJYkUOdA8gnZMUqVWQVCPWUrIADz1QB6oS8iHELAEoU1XNyUvCkeV2tyObCjG7Y0xHHBkOk6-vzz9RM7UF8o9ZPS_ADXfp98EnNbsoCDmiimza092H0E9Kzm-vLdxR_zgFjdH6ibkoOpP1-9ktvBjPu4kvyrDNDxFcP7ym5vTi_WV9mV9-_fF1_usqsBLVkqrWcoagFIutK0XRgqsKUnSwFa0Fg1wHjXNZN3SjbVIxxaE2JLRrBEFvDT8nHY-68a0ZsLaYFzKDn4EYT9tobp__-mVyvN_5ec6GKUhUp4OwhIPi7HcZFjy5aHAYzod9FzWRdlqpWUv0fLSouhSxllVB2RG3wMQbsHidioA9d6q1OXepDlxpqnbpMnjd_rvLo-F1eAt4egc54bTbBRX37IyUIAJZOI-pEfDgSmE5-7zDoaB1OFlsX0C669e4fA_wCuh-6Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283656468</pqid></control><display><type>article</type><title>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chiappini, Franck ; Ramadoss, Preeti ; Vella, Kristen R. ; Cunha, Lucas L. ; Ye, Felix D. ; Stuart, Ronald C. ; Nillni, Eduardo A. ; Hollenberg, Anthony N.</creator><creatorcontrib>Chiappini, Franck ; Ramadoss, Preeti ; Vella, Kristen R. ; Cunha, Lucas L. ; Ye, Felix D. ; Stuart, Ronald C. ; Nillni, Eduardo A. ; Hollenberg, Anthony N.</creatorcontrib><description>► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family.
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family.</description><identifier>ISSN: 0303-7207</identifier><identifier>EISSN: 1872-8057</identifier><identifier>DOI: 10.1016/j.mce.2012.09.006</identifier><identifier>PMID: 23000398</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Animals ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; binding proteins ; CREB ; CREM ; Cyclic AMP Response Element Modulator - genetics ; Cyclic AMP Response Element Modulator - metabolism ; Cyclic AMP Response Element-Binding Protein - genetics ; Cyclic AMP Response Element-Binding Protein - metabolism ; Female ; gene expression ; gene expression regulation ; Gene Expression Regulation - drug effects ; HEK293 Cells ; Humans ; Hypothalamic-pituitary–thyroid axis ; Hypothalamo-Hypophyseal System - physiology ; hypothalamus ; Hypothalamus - cytology ; Hypothalamus - metabolism ; Hypothalamus - secretion ; Male ; messenger RNA ; Mice ; Mice, Knockout ; Mice, Transgenic ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Nerve Tissue Proteins - secretion ; neurons ; Neurons - cytology ; Neurons - metabolism ; Neurons - secretion ; Paraventricular Hypothalamic Nucleus - cytology ; Paraventricular Hypothalamic Nucleus - metabolism ; Paraventricular Hypothalamic Nucleus - secretion ; Pituitary-Adrenal System - physiology ; Recombinant Proteins - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA, Messenger - metabolism ; Thyroid hormone ; thyroid hormones ; thyrotropin ; thyrotropin-releasing hormone ; Thyrotropin-Releasing Hormone - genetics ; Thyrotropin-Releasing Hormone - metabolism ; Thyrotropin-Releasing Hormone - secretion ; TRH expression ; Triiodothyronine - metabolism</subject><ispartof>Molecular and cellular endocrinology, 2013-01, Vol.365 (1), p.84-94</ispartof><rights>2012 Elsevier Ireland Ltd</rights><rights>Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</rights><rights>2012 Elsevier Ireland Ltd. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</citedby><cites>FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0303720712004388$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23000398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiappini, Franck</creatorcontrib><creatorcontrib>Ramadoss, Preeti</creatorcontrib><creatorcontrib>Vella, Kristen R.</creatorcontrib><creatorcontrib>Cunha, Lucas L.</creatorcontrib><creatorcontrib>Ye, Felix D.</creatorcontrib><creatorcontrib>Stuart, Ronald C.</creatorcontrib><creatorcontrib>Nillni, Eduardo A.</creatorcontrib><creatorcontrib>Hollenberg, Anthony N.</creatorcontrib><title>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</title><title>Molecular and cellular endocrinology</title><addtitle>Mol Cell Endocrinol</addtitle><description>► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family.
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family.</description><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>binding proteins</subject><subject>CREB</subject><subject>CREM</subject><subject>Cyclic AMP Response Element Modulator - genetics</subject><subject>Cyclic AMP Response Element Modulator - metabolism</subject><subject>Cyclic AMP Response Element-Binding Protein - genetics</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Female</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation - drug effects</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hypothalamic-pituitary–thyroid axis</subject><subject>Hypothalamo-Hypophyseal System - physiology</subject><subject>hypothalamus</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - metabolism</subject><subject>Hypothalamus - secretion</subject><subject>Male</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nerve Tissue Proteins - secretion</subject><subject>neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurons - secretion</subject><subject>Paraventricular Hypothalamic Nucleus - cytology</subject><subject>Paraventricular Hypothalamic Nucleus - metabolism</subject><subject>Paraventricular Hypothalamic Nucleus - secretion</subject><subject>Pituitary-Adrenal System - physiology</subject><subject>Recombinant Proteins - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Thyroid hormone</subject><subject>thyroid hormones</subject><subject>thyrotropin</subject><subject>thyrotropin-releasing hormone</subject><subject>Thyrotropin-Releasing Hormone - genetics</subject><subject>Thyrotropin-Releasing Hormone - metabolism</subject><subject>Thyrotropin-Releasing Hormone - secretion</subject><subject>TRH expression</subject><subject>Triiodothyronine - metabolism</subject><issn>0303-7207</issn><issn>1872-8057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhB3ABH8shYRzHdiIkJFi1FKkIqbRny3EmG6-SOLWzFfvv8WpLBRc4-Un-3tPMPEJeM8gZMPl-m48W8wJYkUOdA8gnZMUqVWQVCPWUrIADz1QB6oS8iHELAEoU1XNyUvCkeV2tyObCjG7Y0xHHBkOk6-vzz9RM7UF8o9ZPS_ADXfp98EnNbsoCDmiimza092H0E9Kzm-vLdxR_zgFjdH6ibkoOpP1-9ktvBjPu4kvyrDNDxFcP7ym5vTi_WV9mV9-_fF1_usqsBLVkqrWcoagFIutK0XRgqsKUnSwFa0Fg1wHjXNZN3SjbVIxxaE2JLRrBEFvDT8nHY-68a0ZsLaYFzKDn4EYT9tobp__-mVyvN_5ec6GKUhUp4OwhIPi7HcZFjy5aHAYzod9FzWRdlqpWUv0fLSouhSxllVB2RG3wMQbsHidioA9d6q1OXepDlxpqnbpMnjd_rvLo-F1eAt4egc54bTbBRX37IyUIAJZOI-pEfDgSmE5-7zDoaB1OFlsX0C669e4fA_wCuh-6Hw</recordid><startdate>20130105</startdate><enddate>20130105</enddate><creator>Chiappini, Franck</creator><creator>Ramadoss, Preeti</creator><creator>Vella, Kristen R.</creator><creator>Cunha, Lucas L.</creator><creator>Ye, Felix D.</creator><creator>Stuart, Ronald C.</creator><creator>Nillni, Eduardo A.</creator><creator>Hollenberg, Anthony N.</creator><general>Elsevier Ireland Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130105</creationdate><title>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</title><author>Chiappini, Franck ; Ramadoss, Preeti ; Vella, Kristen R. ; Cunha, Lucas L. ; Ye, Felix D. ; Stuart, Ronald C. ; Nillni, Eduardo A. ; Hollenberg, Anthony N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>binding proteins</topic><topic>CREB</topic><topic>CREM</topic><topic>Cyclic AMP Response Element Modulator - genetics</topic><topic>Cyclic AMP Response Element Modulator - metabolism</topic><topic>Cyclic AMP Response Element-Binding Protein - genetics</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Female</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation - drug effects</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hypothalamic-pituitary–thyroid axis</topic><topic>Hypothalamo-Hypophyseal System - physiology</topic><topic>hypothalamus</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - metabolism</topic><topic>Hypothalamus - secretion</topic><topic>Male</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nerve Tissue Proteins - secretion</topic><topic>neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurons - secretion</topic><topic>Paraventricular Hypothalamic Nucleus - cytology</topic><topic>Paraventricular Hypothalamic Nucleus - metabolism</topic><topic>Paraventricular Hypothalamic Nucleus - secretion</topic><topic>Pituitary-Adrenal System - physiology</topic><topic>Recombinant Proteins - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Thyroid hormone</topic><topic>thyroid hormones</topic><topic>thyrotropin</topic><topic>thyrotropin-releasing hormone</topic><topic>Thyrotropin-Releasing Hormone - genetics</topic><topic>Thyrotropin-Releasing Hormone - metabolism</topic><topic>Thyrotropin-Releasing Hormone - secretion</topic><topic>TRH expression</topic><topic>Triiodothyronine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiappini, Franck</creatorcontrib><creatorcontrib>Ramadoss, Preeti</creatorcontrib><creatorcontrib>Vella, Kristen R.</creatorcontrib><creatorcontrib>Cunha, Lucas L.</creatorcontrib><creatorcontrib>Ye, Felix D.</creatorcontrib><creatorcontrib>Stuart, Ronald C.</creatorcontrib><creatorcontrib>Nillni, Eduardo A.</creatorcontrib><creatorcontrib>Hollenberg, Anthony N.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular and cellular endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiappini, Franck</au><au>Ramadoss, Preeti</au><au>Vella, Kristen R.</au><au>Cunha, Lucas L.</au><au>Ye, Felix D.</au><au>Stuart, Ronald C.</au><au>Nillni, Eduardo A.</au><au>Hollenberg, Anthony N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</atitle><jtitle>Molecular and cellular endocrinology</jtitle><addtitle>Mol Cell Endocrinol</addtitle><date>2013-01-05</date><risdate>2013</risdate><volume>365</volume><issue>1</issue><spage>84</spage><epage>94</epage><pages>84-94</pages><issn>0303-7207</issn><eissn>1872-8057</eissn><abstract>► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family.
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>23000398</pmid><doi>10.1016/j.mce.2012.09.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-7207 |
ispartof | Molecular and cellular endocrinology, 2013-01, Vol.365 (1), p.84-94 |
issn | 0303-7207 1872-8057 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3572472 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism binding proteins CREB CREM Cyclic AMP Response Element Modulator - genetics Cyclic AMP Response Element Modulator - metabolism Cyclic AMP Response Element-Binding Protein - genetics Cyclic AMP Response Element-Binding Protein - metabolism Female gene expression gene expression regulation Gene Expression Regulation - drug effects HEK293 Cells Humans Hypothalamic-pituitary–thyroid axis Hypothalamo-Hypophyseal System - physiology hypothalamus Hypothalamus - cytology Hypothalamus - metabolism Hypothalamus - secretion Male messenger RNA Mice Mice, Knockout Mice, Transgenic Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Nerve Tissue Proteins - secretion neurons Neurons - cytology Neurons - metabolism Neurons - secretion Paraventricular Hypothalamic Nucleus - cytology Paraventricular Hypothalamic Nucleus - metabolism Paraventricular Hypothalamic Nucleus - secretion Pituitary-Adrenal System - physiology Recombinant Proteins - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism RNA, Messenger - metabolism Thyroid hormone thyroid hormones thyrotropin thyrotropin-releasing hormone Thyrotropin-Releasing Hormone - genetics Thyrotropin-Releasing Hormone - metabolism Thyrotropin-Releasing Hormone - secretion TRH expression Triiodothyronine - metabolism |
title | Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20members%20CREB%20and%20CREM%20control%20thyrotropin-releasing%20hormone%20(TRH)%20expression%20in%20the%20hypothalamus&rft.jtitle=Molecular%20and%20cellular%20endocrinology&rft.au=Chiappini,%20Franck&rft.date=2013-01-05&rft.volume=365&rft.issue=1&rft.spage=84&rft.epage=94&rft.pages=84-94&rft.issn=0303-7207&rft.eissn=1872-8057&rft_id=info:doi/10.1016/j.mce.2012.09.006&rft_dat=%3Cproquest_pubme%3E1283656468%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283656468&rft_id=info:pmid/23000398&rft_els_id=S0303720712004388&rfr_iscdi=true |