Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus

► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular endocrinology 2013-01, Vol.365 (1), p.84-94
Hauptverfasser: Chiappini, Franck, Ramadoss, Preeti, Vella, Kristen R., Cunha, Lucas L., Ye, Felix D., Stuart, Ronald C., Nillni, Eduardo A., Hollenberg, Anthony N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 84
container_title Molecular and cellular endocrinology
container_volume 365
creator Chiappini, Franck
Ramadoss, Preeti
Vella, Kristen R.
Cunha, Lucas L.
Ye, Felix D.
Stuart, Ronald C.
Nillni, Eduardo A.
Hollenberg, Anthony N.
description ► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family. Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family.
doi_str_mv 10.1016/j.mce.2012.09.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3572472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303720712004388</els_id><sourcerecordid>1283656468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhB3ABH8shYRzHdiIkJFi1FKkIqbRny3EmG6-SOLWzFfvv8WpLBRc4-Un-3tPMPEJeM8gZMPl-m48W8wJYkUOdA8gnZMUqVWQVCPWUrIADz1QB6oS8iHELAEoU1XNyUvCkeV2tyObCjG7Y0xHHBkOk6-vzz9RM7UF8o9ZPS_ADXfp98EnNbsoCDmiimza092H0E9Kzm-vLdxR_zgFjdH6ibkoOpP1-9ktvBjPu4kvyrDNDxFcP7ym5vTi_WV9mV9-_fF1_usqsBLVkqrWcoagFIutK0XRgqsKUnSwFa0Fg1wHjXNZN3SjbVIxxaE2JLRrBEFvDT8nHY-68a0ZsLaYFzKDn4EYT9tobp__-mVyvN_5ec6GKUhUp4OwhIPi7HcZFjy5aHAYzod9FzWRdlqpWUv0fLSouhSxllVB2RG3wMQbsHidioA9d6q1OXepDlxpqnbpMnjd_rvLo-F1eAt4egc54bTbBRX37IyUIAJZOI-pEfDgSmE5-7zDoaB1OFlsX0C669e4fA_wCuh-6Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283656468</pqid></control><display><type>article</type><title>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chiappini, Franck ; Ramadoss, Preeti ; Vella, Kristen R. ; Cunha, Lucas L. ; Ye, Felix D. ; Stuart, Ronald C. ; Nillni, Eduardo A. ; Hollenberg, Anthony N.</creator><creatorcontrib>Chiappini, Franck ; Ramadoss, Preeti ; Vella, Kristen R. ; Cunha, Lucas L. ; Ye, Felix D. ; Stuart, Ronald C. ; Nillni, Eduardo A. ; Hollenberg, Anthony N.</creatorcontrib><description>► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family. Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family.</description><identifier>ISSN: 0303-7207</identifier><identifier>EISSN: 1872-8057</identifier><identifier>DOI: 10.1016/j.mce.2012.09.006</identifier><identifier>PMID: 23000398</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Animals ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; binding proteins ; CREB ; CREM ; Cyclic AMP Response Element Modulator - genetics ; Cyclic AMP Response Element Modulator - metabolism ; Cyclic AMP Response Element-Binding Protein - genetics ; Cyclic AMP Response Element-Binding Protein - metabolism ; Female ; gene expression ; gene expression regulation ; Gene Expression Regulation - drug effects ; HEK293 Cells ; Humans ; Hypothalamic-pituitary–thyroid axis ; Hypothalamo-Hypophyseal System - physiology ; hypothalamus ; Hypothalamus - cytology ; Hypothalamus - metabolism ; Hypothalamus - secretion ; Male ; messenger RNA ; Mice ; Mice, Knockout ; Mice, Transgenic ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Nerve Tissue Proteins - secretion ; neurons ; Neurons - cytology ; Neurons - metabolism ; Neurons - secretion ; Paraventricular Hypothalamic Nucleus - cytology ; Paraventricular Hypothalamic Nucleus - metabolism ; Paraventricular Hypothalamic Nucleus - secretion ; Pituitary-Adrenal System - physiology ; Recombinant Proteins - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA, Messenger - metabolism ; Thyroid hormone ; thyroid hormones ; thyrotropin ; thyrotropin-releasing hormone ; Thyrotropin-Releasing Hormone - genetics ; Thyrotropin-Releasing Hormone - metabolism ; Thyrotropin-Releasing Hormone - secretion ; TRH expression ; Triiodothyronine - metabolism</subject><ispartof>Molecular and cellular endocrinology, 2013-01, Vol.365 (1), p.84-94</ispartof><rights>2012 Elsevier Ireland Ltd</rights><rights>Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</rights><rights>2012 Elsevier Ireland Ltd. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</citedby><cites>FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0303720712004388$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23000398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiappini, Franck</creatorcontrib><creatorcontrib>Ramadoss, Preeti</creatorcontrib><creatorcontrib>Vella, Kristen R.</creatorcontrib><creatorcontrib>Cunha, Lucas L.</creatorcontrib><creatorcontrib>Ye, Felix D.</creatorcontrib><creatorcontrib>Stuart, Ronald C.</creatorcontrib><creatorcontrib>Nillni, Eduardo A.</creatorcontrib><creatorcontrib>Hollenberg, Anthony N.</creatorcontrib><title>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</title><title>Molecular and cellular endocrinology</title><addtitle>Mol Cell Endocrinol</addtitle><description>► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family. Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family.</description><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>binding proteins</subject><subject>CREB</subject><subject>CREM</subject><subject>Cyclic AMP Response Element Modulator - genetics</subject><subject>Cyclic AMP Response Element Modulator - metabolism</subject><subject>Cyclic AMP Response Element-Binding Protein - genetics</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Female</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation - drug effects</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hypothalamic-pituitary–thyroid axis</subject><subject>Hypothalamo-Hypophyseal System - physiology</subject><subject>hypothalamus</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - metabolism</subject><subject>Hypothalamus - secretion</subject><subject>Male</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nerve Tissue Proteins - secretion</subject><subject>neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurons - secretion</subject><subject>Paraventricular Hypothalamic Nucleus - cytology</subject><subject>Paraventricular Hypothalamic Nucleus - metabolism</subject><subject>Paraventricular Hypothalamic Nucleus - secretion</subject><subject>Pituitary-Adrenal System - physiology</subject><subject>Recombinant Proteins - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Thyroid hormone</subject><subject>thyroid hormones</subject><subject>thyrotropin</subject><subject>thyrotropin-releasing hormone</subject><subject>Thyrotropin-Releasing Hormone - genetics</subject><subject>Thyrotropin-Releasing Hormone - metabolism</subject><subject>Thyrotropin-Releasing Hormone - secretion</subject><subject>TRH expression</subject><subject>Triiodothyronine - metabolism</subject><issn>0303-7207</issn><issn>1872-8057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhB3ABH8shYRzHdiIkJFi1FKkIqbRny3EmG6-SOLWzFfvv8WpLBRc4-Un-3tPMPEJeM8gZMPl-m48W8wJYkUOdA8gnZMUqVWQVCPWUrIADz1QB6oS8iHELAEoU1XNyUvCkeV2tyObCjG7Y0xHHBkOk6-vzz9RM7UF8o9ZPS_ADXfp98EnNbsoCDmiimza092H0E9Kzm-vLdxR_zgFjdH6ibkoOpP1-9ktvBjPu4kvyrDNDxFcP7ym5vTi_WV9mV9-_fF1_usqsBLVkqrWcoagFIutK0XRgqsKUnSwFa0Fg1wHjXNZN3SjbVIxxaE2JLRrBEFvDT8nHY-68a0ZsLaYFzKDn4EYT9tobp__-mVyvN_5ec6GKUhUp4OwhIPi7HcZFjy5aHAYzod9FzWRdlqpWUv0fLSouhSxllVB2RG3wMQbsHidioA9d6q1OXepDlxpqnbpMnjd_rvLo-F1eAt4egc54bTbBRX37IyUIAJZOI-pEfDgSmE5-7zDoaB1OFlsX0C669e4fA_wCuh-6Hw</recordid><startdate>20130105</startdate><enddate>20130105</enddate><creator>Chiappini, Franck</creator><creator>Ramadoss, Preeti</creator><creator>Vella, Kristen R.</creator><creator>Cunha, Lucas L.</creator><creator>Ye, Felix D.</creator><creator>Stuart, Ronald C.</creator><creator>Nillni, Eduardo A.</creator><creator>Hollenberg, Anthony N.</creator><general>Elsevier Ireland Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130105</creationdate><title>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</title><author>Chiappini, Franck ; Ramadoss, Preeti ; Vella, Kristen R. ; Cunha, Lucas L. ; Ye, Felix D. ; Stuart, Ronald C. ; Nillni, Eduardo A. ; Hollenberg, Anthony N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-7dc31e595ee1f45bf0a82a4f6451d05eff013369b9b7cb81130da4edea51eeda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>binding proteins</topic><topic>CREB</topic><topic>CREM</topic><topic>Cyclic AMP Response Element Modulator - genetics</topic><topic>Cyclic AMP Response Element Modulator - metabolism</topic><topic>Cyclic AMP Response Element-Binding Protein - genetics</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Female</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation - drug effects</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hypothalamic-pituitary–thyroid axis</topic><topic>Hypothalamo-Hypophyseal System - physiology</topic><topic>hypothalamus</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - metabolism</topic><topic>Hypothalamus - secretion</topic><topic>Male</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nerve Tissue Proteins - secretion</topic><topic>neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurons - secretion</topic><topic>Paraventricular Hypothalamic Nucleus - cytology</topic><topic>Paraventricular Hypothalamic Nucleus - metabolism</topic><topic>Paraventricular Hypothalamic Nucleus - secretion</topic><topic>Pituitary-Adrenal System - physiology</topic><topic>Recombinant Proteins - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Thyroid hormone</topic><topic>thyroid hormones</topic><topic>thyrotropin</topic><topic>thyrotropin-releasing hormone</topic><topic>Thyrotropin-Releasing Hormone - genetics</topic><topic>Thyrotropin-Releasing Hormone - metabolism</topic><topic>Thyrotropin-Releasing Hormone - secretion</topic><topic>TRH expression</topic><topic>Triiodothyronine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiappini, Franck</creatorcontrib><creatorcontrib>Ramadoss, Preeti</creatorcontrib><creatorcontrib>Vella, Kristen R.</creatorcontrib><creatorcontrib>Cunha, Lucas L.</creatorcontrib><creatorcontrib>Ye, Felix D.</creatorcontrib><creatorcontrib>Stuart, Ronald C.</creatorcontrib><creatorcontrib>Nillni, Eduardo A.</creatorcontrib><creatorcontrib>Hollenberg, Anthony N.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular and cellular endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiappini, Franck</au><au>Ramadoss, Preeti</au><au>Vella, Kristen R.</au><au>Cunha, Lucas L.</au><au>Ye, Felix D.</au><au>Stuart, Ronald C.</au><au>Nillni, Eduardo A.</au><au>Hollenberg, Anthony N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus</atitle><jtitle>Molecular and cellular endocrinology</jtitle><addtitle>Mol Cell Endocrinol</addtitle><date>2013-01-05</date><risdate>2013</risdate><volume>365</volume><issue>1</issue><spage>84</spage><epage>94</epage><pages>84-94</pages><issn>0303-7207</issn><eissn>1872-8057</eissn><abstract>► Lack of CREB in PVN neurons leads to a significant increase of TRH expression. ► Lack of CREB in PVN neurons leads to a significant increase of CREM expression. ► Lack of CREB in PVN neurons does not affect regulation of TRH by thyroid hormones. ► CREM regulates TRH in vitro and in vivo. ► Regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family. Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1ΔSIM1 mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1ΔSIM1 mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1ΔSIM1 mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1ΔSIM1 mice regardless of thyroid status, demonstrating that the regulation of TRH by T3in vivo likely occurs independently of the CREB/CREM family.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>23000398</pmid><doi>10.1016/j.mce.2012.09.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-7207
ispartof Molecular and cellular endocrinology, 2013-01, Vol.365 (1), p.84-94
issn 0303-7207
1872-8057
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3572472
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
binding proteins
CREB
CREM
Cyclic AMP Response Element Modulator - genetics
Cyclic AMP Response Element Modulator - metabolism
Cyclic AMP Response Element-Binding Protein - genetics
Cyclic AMP Response Element-Binding Protein - metabolism
Female
gene expression
gene expression regulation
Gene Expression Regulation - drug effects
HEK293 Cells
Humans
Hypothalamic-pituitary–thyroid axis
Hypothalamo-Hypophyseal System - physiology
hypothalamus
Hypothalamus - cytology
Hypothalamus - metabolism
Hypothalamus - secretion
Male
messenger RNA
Mice
Mice, Knockout
Mice, Transgenic
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Nerve Tissue Proteins - secretion
neurons
Neurons - cytology
Neurons - metabolism
Neurons - secretion
Paraventricular Hypothalamic Nucleus - cytology
Paraventricular Hypothalamic Nucleus - metabolism
Paraventricular Hypothalamic Nucleus - secretion
Pituitary-Adrenal System - physiology
Recombinant Proteins - metabolism
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA, Messenger - metabolism
Thyroid hormone
thyroid hormones
thyrotropin
thyrotropin-releasing hormone
Thyrotropin-Releasing Hormone - genetics
Thyrotropin-Releasing Hormone - metabolism
Thyrotropin-Releasing Hormone - secretion
TRH expression
Triiodothyronine - metabolism
title Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20members%20CREB%20and%20CREM%20control%20thyrotropin-releasing%20hormone%20(TRH)%20expression%20in%20the%20hypothalamus&rft.jtitle=Molecular%20and%20cellular%20endocrinology&rft.au=Chiappini,%20Franck&rft.date=2013-01-05&rft.volume=365&rft.issue=1&rft.spage=84&rft.epage=94&rft.pages=84-94&rft.issn=0303-7207&rft.eissn=1872-8057&rft_id=info:doi/10.1016/j.mce.2012.09.006&rft_dat=%3Cproquest_pubme%3E1283656468%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283656468&rft_id=info:pmid/23000398&rft_els_id=S0303720712004388&rfr_iscdi=true