miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression
The spindle assembly checkpoint (SAC) is a ‘wait-anaphase’ mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2013-03, Vol.20 (3), p.430-442 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 3 |
container_start_page | 430 |
container_title | Cell death and differentiation |
container_volume | 20 |
creator | Bhattacharjya, S Nath, S Ghose, J Maiti, G P Biswas, N Bandyopadhyay, S Panda, C K Bhattacharyya, N P Roychoudhury, S |
description | The spindle assembly checkpoint (SAC) is a ‘wait-anaphase’ mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b. |
doi_str_mv | 10.1038/cdd.2012.135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3572219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888291361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-bffa0d63fdab3e8beaa61f673e4ccccd58bbefd52b2c8b52a9bf3a1f771426df3</originalsourceid><addsrcrecordid>eNqFkctrFTEUhwdRbK3uXEvATRfONY_JPDZCqU-oCKLrkMfJ3NSZZEwywv3vzXhrqSIYCAmcL19O8quqpwTvCGb9S23MjmJCd4Txe9Upabq25g1m98uecVwPuOlOqkcpXWOM225oH1YnlOFh6Dk5reLsPteEcoWWGOaQISEN04QMyLxH6oCyjCNk50eUFufNBEimBLOaDkjvQX9bgvMZjeABfbx4TZD0Bs3BrJP8dWh2OWSnN_sYISUX_OPqgZVTgic361n19e2bL5fv66tP7z5cXlzVuulZrpW1EpuWWSMVg16BlC2xbceg0WUY3isF1nCqqO4Vp3JQlkliu440tDWWnVWvjt5lVTMYDT5HOYklulnGgwjSiT8r3u3FGH4IxjtKyVAE5zeCGL6vkLKYXdp-R3oIaxKEEd7SMvn_Udq3Q9MOAyvo87_Q67BGX35io3jT96TbhC-OlI4hpQj2tm-CxZa7KLmLLffSxoY_u_vWW_h30AWoj0AqJT9CvHPrv4Q_Adqzupo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285488175</pqid></control><display><type>article</type><title>miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Bhattacharjya, S ; Nath, S ; Ghose, J ; Maiti, G P ; Biswas, N ; Bandyopadhyay, S ; Panda, C K ; Bhattacharyya, N P ; Roychoudhury, S</creator><creatorcontrib>Bhattacharjya, S ; Nath, S ; Ghose, J ; Maiti, G P ; Biswas, N ; Bandyopadhyay, S ; Panda, C K ; Bhattacharyya, N P ; Roychoudhury, S</creatorcontrib><description>The spindle assembly checkpoint (SAC) is a ‘wait-anaphase’ mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2012.135</identifier><identifier>PMID: 23099851</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated Regions ; 631/337/384/331 ; 631/80/641/2187 ; 631/80/82 ; 692/420/2489/1381 ; adaptor proteins ; Anaphase ; Apoptosis ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Calcium-Binding Proteins - metabolism ; Cancer ; Cell Biology ; Cell Cycle Analysis ; Cell Cycle Proteins - antagonists & inhibitors ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell death ; Cell Line, Tumor ; Cell Proliferation ; Chromosome Aberrations ; Down-Regulation ; HCT116 Cells ; Hep G2 Cells ; Humans ; Life Sciences ; M Phase Cell Cycle Checkpoints ; Mad2 Proteins ; Metaphase ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Mitosis ; Nuclear Proteins - antagonists & inhibitors ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Original Paper ; Repressor Proteins - metabolism ; Spindles ; Stem Cells ; Stochasticity ; Tumor cell lines</subject><ispartof>Cell death and differentiation, 2013-03, Vol.20 (3), p.430-442</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Copyright © 2013 Macmillan Publishers Limited 2013 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-bffa0d63fdab3e8beaa61f673e4ccccd58bbefd52b2c8b52a9bf3a1f771426df3</citedby><cites>FETCH-LOGICAL-c483t-bffa0d63fdab3e8beaa61f673e4ccccd58bbefd52b2c8b52a9bf3a1f771426df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572219/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572219/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23099851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharjya, S</creatorcontrib><creatorcontrib>Nath, S</creatorcontrib><creatorcontrib>Ghose, J</creatorcontrib><creatorcontrib>Maiti, G P</creatorcontrib><creatorcontrib>Biswas, N</creatorcontrib><creatorcontrib>Bandyopadhyay, S</creatorcontrib><creatorcontrib>Panda, C K</creatorcontrib><creatorcontrib>Bhattacharyya, N P</creatorcontrib><creatorcontrib>Roychoudhury, S</creatorcontrib><title>miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>The spindle assembly checkpoint (SAC) is a ‘wait-anaphase’ mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b.</description><subject>3' Untranslated Regions</subject><subject>631/337/384/331</subject><subject>631/80/641/2187</subject><subject>631/80/82</subject><subject>692/420/2489/1381</subject><subject>adaptor proteins</subject><subject>Anaphase</subject><subject>Apoptosis</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell Cycle Proteins - antagonists & inhibitors</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Chromosome Aberrations</subject><subject>Down-Regulation</subject><subject>HCT116 Cells</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>M Phase Cell Cycle Checkpoints</subject><subject>Mad2 Proteins</subject><subject>Metaphase</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Mitosis</subject><subject>Nuclear Proteins - antagonists & inhibitors</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Original Paper</subject><subject>Repressor Proteins - metabolism</subject><subject>Spindles</subject><subject>Stem Cells</subject><subject>Stochasticity</subject><subject>Tumor cell lines</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctrFTEUhwdRbK3uXEvATRfONY_JPDZCqU-oCKLrkMfJ3NSZZEwywv3vzXhrqSIYCAmcL19O8quqpwTvCGb9S23MjmJCd4Txe9Upabq25g1m98uecVwPuOlOqkcpXWOM225oH1YnlOFh6Dk5reLsPteEcoWWGOaQISEN04QMyLxH6oCyjCNk50eUFufNBEimBLOaDkjvQX9bgvMZjeABfbx4TZD0Bs3BrJP8dWh2OWSnN_sYISUX_OPqgZVTgic361n19e2bL5fv66tP7z5cXlzVuulZrpW1EpuWWSMVg16BlC2xbceg0WUY3isF1nCqqO4Vp3JQlkliu440tDWWnVWvjt5lVTMYDT5HOYklulnGgwjSiT8r3u3FGH4IxjtKyVAE5zeCGL6vkLKYXdp-R3oIaxKEEd7SMvn_Udq3Q9MOAyvo87_Q67BGX35io3jT96TbhC-OlI4hpQj2tm-CxZa7KLmLLffSxoY_u_vWW_h30AWoj0AqJT9CvHPrv4Q_Adqzupo</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Bhattacharjya, S</creator><creator>Nath, S</creator><creator>Ghose, J</creator><creator>Maiti, G P</creator><creator>Biswas, N</creator><creator>Bandyopadhyay, S</creator><creator>Panda, C K</creator><creator>Bhattacharyya, N P</creator><creator>Roychoudhury, S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression</title><author>Bhattacharjya, S ; Nath, S ; Ghose, J ; Maiti, G P ; Biswas, N ; Bandyopadhyay, S ; Panda, C K ; Bhattacharyya, N P ; Roychoudhury, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-bffa0d63fdab3e8beaa61f673e4ccccd58bbefd52b2c8b52a9bf3a1f771426df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3' Untranslated Regions</topic><topic>631/337/384/331</topic><topic>631/80/641/2187</topic><topic>631/80/82</topic><topic>692/420/2489/1381</topic><topic>adaptor proteins</topic><topic>Anaphase</topic><topic>Apoptosis</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell Cycle Proteins - antagonists & inhibitors</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Chromosome Aberrations</topic><topic>Down-Regulation</topic><topic>HCT116 Cells</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>M Phase Cell Cycle Checkpoints</topic><topic>Mad2 Proteins</topic><topic>Metaphase</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Mitosis</topic><topic>Nuclear Proteins - antagonists & inhibitors</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Original Paper</topic><topic>Repressor Proteins - metabolism</topic><topic>Spindles</topic><topic>Stem Cells</topic><topic>Stochasticity</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharjya, S</creatorcontrib><creatorcontrib>Nath, S</creatorcontrib><creatorcontrib>Ghose, J</creatorcontrib><creatorcontrib>Maiti, G P</creatorcontrib><creatorcontrib>Biswas, N</creatorcontrib><creatorcontrib>Bandyopadhyay, S</creatorcontrib><creatorcontrib>Panda, C K</creatorcontrib><creatorcontrib>Bhattacharyya, N P</creatorcontrib><creatorcontrib>Roychoudhury, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharjya, S</au><au>Nath, S</au><au>Ghose, J</au><au>Maiti, G P</au><au>Biswas, N</au><au>Bandyopadhyay, S</au><au>Panda, C K</au><au>Bhattacharyya, N P</au><au>Roychoudhury, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>20</volume><issue>3</issue><spage>430</spage><epage>442</epage><pages>430-442</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>The spindle assembly checkpoint (SAC) is a ‘wait-anaphase’ mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23099851</pmid><doi>10.1038/cdd.2012.135</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2013-03, Vol.20 (3), p.430-442 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3572219 |
source | MEDLINE; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 3' Untranslated Regions 631/337/384/331 631/80/641/2187 631/80/82 692/420/2489/1381 adaptor proteins Anaphase Apoptosis Base Sequence Biochemistry Biomedical and Life Sciences Calcium-Binding Proteins - metabolism Cancer Cell Biology Cell Cycle Analysis Cell Cycle Proteins - antagonists & inhibitors Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell death Cell Line, Tumor Cell Proliferation Chromosome Aberrations Down-Regulation HCT116 Cells Hep G2 Cells Humans Life Sciences M Phase Cell Cycle Checkpoints Mad2 Proteins Metaphase MicroRNAs - genetics MicroRNAs - metabolism miRNA Mitosis Nuclear Proteins - antagonists & inhibitors Nuclear Proteins - genetics Nuclear Proteins - metabolism Original Paper Repressor Proteins - metabolism Spindles Stem Cells Stochasticity Tumor cell lines |
title | miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-125b%20promotes%20cell%20death%20by%20targeting%20spindle%20assembly%20checkpoint%20gene%20MAD1%20and%20modulating%20mitotic%20progression&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Bhattacharjya,%20S&rft.date=2013-03-01&rft.volume=20&rft.issue=3&rft.spage=430&rft.epage=442&rft.pages=430-442&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2012.135&rft_dat=%3Cproquest_pubme%3E2888291361%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1285488175&rft_id=info:pmid/23099851&rfr_iscdi=true |