Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system
Acute liver failure has a high mortality unless patients receive a liver transplant; however, there are insufficient donor organs to meet the clinical need. The liver may rapidly recover from acute injury by hepatic cell regeneration given time. A bioartificial liver machine can provide temporary li...
Gespeichert in:
Veröffentlicht in: | BioResearch open access 2013-02, Vol.2 (1), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | BioResearch open access |
container_volume | 2 |
creator | Erro, Eloy Bundy, James Massie, Isobel Chalmers, Sherri-Ann Gautier, Aude Gerontas, Spyridon Hoare, Mike Sharratt, Peter Choudhury, Sarah Lubowiecki, Marcin Llewellyn, Ian Legallais, Cécile Fuller, Barry Hodgson, Humphrey Selden, Clare |
description | Acute liver failure has a high mortality unless patients receive a liver transplant; however, there are insufficient donor organs to meet the clinical need. The liver may rapidly recover from acute injury by hepatic cell regeneration given time. A bioartificial liver machine can provide temporary liver support to enable such regeneration to occur. We developed a bioartificial liver machine using human-derived liver cells encapsulated in alginate, cultured in a fluidized bed bioreactor to a level of function suitable for clinical use (performance competence). HepG2 cells were encapsulated in alginate using a JetCutter to produce ∼500 μm spherical beads containing cells at ∼1.75 million cells/mL beads. Within the beads, encapsulated cells proliferated to form compact cell spheroids (AELS) with good cell-to-cell contact and cell function, that were analyzed functionally and by gene expression at mRNA and protein levels. We established a methodology to enable a ∼34-fold increase in cell density within the AELS over 11-13 days, maintaining cell viability. Optimized nutrient and oxygen provision were numerically modeled and tested experimentally, achieving a cell density at harvest of >45 million cells/mL beads; >5×10(10) cells were produced in 1100 mL of beads. This process is scalable to human size ([0.7-1]×10(11)). A short-term storage protocol at ambient temperature was established, enabling transport from laboratory to bedside over 48 h, appropriate for clinical translation of a manufactured bioartificial liver machine. |
doi_str_mv | 10.1089/biores.2012.0286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3569957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319164507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-befccc9a818822687bc4ef4dc75ae676c5a4b2d96b9dae435270a527bc16680a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXpnROyxIVLFtvxJwckqCggVeqlnC3Hmey6SuxgJ5X2d_CHcbplgV7qg215nnk1nnmr6jXBG4KVft_6mCBvKCZ0g6kSz6pTSgSrpRL4-fHO2El1nvMtLksJ0VD5sjqhDSdMYnZa_frsI4StDwDJhy2ad4AGfwfpA8rODlAvE7KhQy7GAbmd9QF1cA_sUez_4sjBMKBS0mhzRn0sD4MPvkig2aYtzKt4SbYrY9Pse-98CR6S8zJNMc0o7_MM46vqRW-HDOcP51n14_LLzcW3-ur66_eLT1e1Y1zOdQu9c05bRZSiVCjZOgY965zkFoQUjlvW0k6LVncWWMOpxLZsrSNCKGybs-rjQXda2hE6B2FOdjBT8qNNexOtN_9Hgt-ZbbwzDRdac1kE3j0IpPhzgTyb0ee1ETZAXLIhnGrdNBTjp9GG6DIwjlfVt4_Q27ikUDphytAkF0QrVih8oFyKOSfoj3UTbFZ_mIM_zOoPs_qjpLz597_HhD9uaH4DWay61A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477561984</pqid></control><display><type>article</type><title>Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system</title><source>Mary Ann Liebert Online - Open Access</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Erro, Eloy ; Bundy, James ; Massie, Isobel ; Chalmers, Sherri-Ann ; Gautier, Aude ; Gerontas, Spyridon ; Hoare, Mike ; Sharratt, Peter ; Choudhury, Sarah ; Lubowiecki, Marcin ; Llewellyn, Ian ; Legallais, Cécile ; Fuller, Barry ; Hodgson, Humphrey ; Selden, Clare</creator><creatorcontrib>Erro, Eloy ; Bundy, James ; Massie, Isobel ; Chalmers, Sherri-Ann ; Gautier, Aude ; Gerontas, Spyridon ; Hoare, Mike ; Sharratt, Peter ; Choudhury, Sarah ; Lubowiecki, Marcin ; Llewellyn, Ian ; Legallais, Cécile ; Fuller, Barry ; Hodgson, Humphrey ; Selden, Clare</creatorcontrib><description>Acute liver failure has a high mortality unless patients receive a liver transplant; however, there are insufficient donor organs to meet the clinical need. The liver may rapidly recover from acute injury by hepatic cell regeneration given time. A bioartificial liver machine can provide temporary liver support to enable such regeneration to occur. We developed a bioartificial liver machine using human-derived liver cells encapsulated in alginate, cultured in a fluidized bed bioreactor to a level of function suitable for clinical use (performance competence). HepG2 cells were encapsulated in alginate using a JetCutter to produce ∼500 μm spherical beads containing cells at ∼1.75 million cells/mL beads. Within the beads, encapsulated cells proliferated to form compact cell spheroids (AELS) with good cell-to-cell contact and cell function, that were analyzed functionally and by gene expression at mRNA and protein levels. We established a methodology to enable a ∼34-fold increase in cell density within the AELS over 11-13 days, maintaining cell viability. Optimized nutrient and oxygen provision were numerically modeled and tested experimentally, achieving a cell density at harvest of >45 million cells/mL beads; >5×10(10) cells were produced in 1100 mL of beads. This process is scalable to human size ([0.7-1]×10(11)). A short-term storage protocol at ambient temperature was established, enabling transport from laboratory to bedside over 48 h, appropriate for clinical translation of a manufactured bioartificial liver machine.</description><identifier>ISSN: 2164-7844</identifier><identifier>ISSN: 2164-7860</identifier><identifier>EISSN: 2164-7860</identifier><identifier>DOI: 10.1089/biores.2012.0286</identifier><identifier>PMID: 23514704</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Bioengineering ; Original s</subject><ispartof>BioResearch open access, 2013-02, Vol.2 (1), p.1-11</ispartof><rights>(©) Copyright 2013, Mary Ann Liebert, Inc.</rights><rights>Copyright 2013, Mary Ann Liebert, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-befccc9a818822687bc4ef4dc75ae676c5a4b2d96b9dae435270a527bc16680a3</citedby><cites>FETCH-LOGICAL-c457t-befccc9a818822687bc4ef4dc75ae676c5a4b2d96b9dae435270a527bc16680a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569957/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569957/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23514704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erro, Eloy</creatorcontrib><creatorcontrib>Bundy, James</creatorcontrib><creatorcontrib>Massie, Isobel</creatorcontrib><creatorcontrib>Chalmers, Sherri-Ann</creatorcontrib><creatorcontrib>Gautier, Aude</creatorcontrib><creatorcontrib>Gerontas, Spyridon</creatorcontrib><creatorcontrib>Hoare, Mike</creatorcontrib><creatorcontrib>Sharratt, Peter</creatorcontrib><creatorcontrib>Choudhury, Sarah</creatorcontrib><creatorcontrib>Lubowiecki, Marcin</creatorcontrib><creatorcontrib>Llewellyn, Ian</creatorcontrib><creatorcontrib>Legallais, Cécile</creatorcontrib><creatorcontrib>Fuller, Barry</creatorcontrib><creatorcontrib>Hodgson, Humphrey</creatorcontrib><creatorcontrib>Selden, Clare</creatorcontrib><title>Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system</title><title>BioResearch open access</title><addtitle>Biores Open Access</addtitle><description>Acute liver failure has a high mortality unless patients receive a liver transplant; however, there are insufficient donor organs to meet the clinical need. The liver may rapidly recover from acute injury by hepatic cell regeneration given time. A bioartificial liver machine can provide temporary liver support to enable such regeneration to occur. We developed a bioartificial liver machine using human-derived liver cells encapsulated in alginate, cultured in a fluidized bed bioreactor to a level of function suitable for clinical use (performance competence). HepG2 cells were encapsulated in alginate using a JetCutter to produce ∼500 μm spherical beads containing cells at ∼1.75 million cells/mL beads. Within the beads, encapsulated cells proliferated to form compact cell spheroids (AELS) with good cell-to-cell contact and cell function, that were analyzed functionally and by gene expression at mRNA and protein levels. We established a methodology to enable a ∼34-fold increase in cell density within the AELS over 11-13 days, maintaining cell viability. Optimized nutrient and oxygen provision were numerically modeled and tested experimentally, achieving a cell density at harvest of >45 million cells/mL beads; >5×10(10) cells were produced in 1100 mL of beads. This process is scalable to human size ([0.7-1]×10(11)). A short-term storage protocol at ambient temperature was established, enabling transport from laboratory to bedside over 48 h, appropriate for clinical translation of a manufactured bioartificial liver machine.</description><subject>Bioengineering</subject><subject>Original s</subject><issn>2164-7844</issn><issn>2164-7860</issn><issn>2164-7860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1v1DAQhiMEolXpnROyxIVLFtvxJwckqCggVeqlnC3Hmey6SuxgJ5X2d_CHcbplgV7qg215nnk1nnmr6jXBG4KVft_6mCBvKCZ0g6kSz6pTSgSrpRL4-fHO2El1nvMtLksJ0VD5sjqhDSdMYnZa_frsI4StDwDJhy2ad4AGfwfpA8rODlAvE7KhQy7GAbmd9QF1cA_sUez_4sjBMKBS0mhzRn0sD4MPvkig2aYtzKt4SbYrY9Pse-98CR6S8zJNMc0o7_MM46vqRW-HDOcP51n14_LLzcW3-ur66_eLT1e1Y1zOdQu9c05bRZSiVCjZOgY965zkFoQUjlvW0k6LVncWWMOpxLZsrSNCKGybs-rjQXda2hE6B2FOdjBT8qNNexOtN_9Hgt-ZbbwzDRdac1kE3j0IpPhzgTyb0ee1ETZAXLIhnGrdNBTjp9GG6DIwjlfVt4_Q27ikUDphytAkF0QrVih8oFyKOSfoj3UTbFZ_mIM_zOoPs_qjpLz597_HhD9uaH4DWay61A</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Erro, Eloy</creator><creator>Bundy, James</creator><creator>Massie, Isobel</creator><creator>Chalmers, Sherri-Ann</creator><creator>Gautier, Aude</creator><creator>Gerontas, Spyridon</creator><creator>Hoare, Mike</creator><creator>Sharratt, Peter</creator><creator>Choudhury, Sarah</creator><creator>Lubowiecki, Marcin</creator><creator>Llewellyn, Ian</creator><creator>Legallais, Cécile</creator><creator>Fuller, Barry</creator><creator>Hodgson, Humphrey</creator><creator>Selden, Clare</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201302</creationdate><title>Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system</title><author>Erro, Eloy ; Bundy, James ; Massie, Isobel ; Chalmers, Sherri-Ann ; Gautier, Aude ; Gerontas, Spyridon ; Hoare, Mike ; Sharratt, Peter ; Choudhury, Sarah ; Lubowiecki, Marcin ; Llewellyn, Ian ; Legallais, Cécile ; Fuller, Barry ; Hodgson, Humphrey ; Selden, Clare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-befccc9a818822687bc4ef4dc75ae676c5a4b2d96b9dae435270a527bc16680a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioengineering</topic><topic>Original s</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erro, Eloy</creatorcontrib><creatorcontrib>Bundy, James</creatorcontrib><creatorcontrib>Massie, Isobel</creatorcontrib><creatorcontrib>Chalmers, Sherri-Ann</creatorcontrib><creatorcontrib>Gautier, Aude</creatorcontrib><creatorcontrib>Gerontas, Spyridon</creatorcontrib><creatorcontrib>Hoare, Mike</creatorcontrib><creatorcontrib>Sharratt, Peter</creatorcontrib><creatorcontrib>Choudhury, Sarah</creatorcontrib><creatorcontrib>Lubowiecki, Marcin</creatorcontrib><creatorcontrib>Llewellyn, Ian</creatorcontrib><creatorcontrib>Legallais, Cécile</creatorcontrib><creatorcontrib>Fuller, Barry</creatorcontrib><creatorcontrib>Hodgson, Humphrey</creatorcontrib><creatorcontrib>Selden, Clare</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioResearch open access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erro, Eloy</au><au>Bundy, James</au><au>Massie, Isobel</au><au>Chalmers, Sherri-Ann</au><au>Gautier, Aude</au><au>Gerontas, Spyridon</au><au>Hoare, Mike</au><au>Sharratt, Peter</au><au>Choudhury, Sarah</au><au>Lubowiecki, Marcin</au><au>Llewellyn, Ian</au><au>Legallais, Cécile</au><au>Fuller, Barry</au><au>Hodgson, Humphrey</au><au>Selden, Clare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system</atitle><jtitle>BioResearch open access</jtitle><addtitle>Biores Open Access</addtitle><date>2013-02</date><risdate>2013</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2164-7844</issn><issn>2164-7860</issn><eissn>2164-7860</eissn><abstract>Acute liver failure has a high mortality unless patients receive a liver transplant; however, there are insufficient donor organs to meet the clinical need. The liver may rapidly recover from acute injury by hepatic cell regeneration given time. A bioartificial liver machine can provide temporary liver support to enable such regeneration to occur. We developed a bioartificial liver machine using human-derived liver cells encapsulated in alginate, cultured in a fluidized bed bioreactor to a level of function suitable for clinical use (performance competence). HepG2 cells were encapsulated in alginate using a JetCutter to produce ∼500 μm spherical beads containing cells at ∼1.75 million cells/mL beads. Within the beads, encapsulated cells proliferated to form compact cell spheroids (AELS) with good cell-to-cell contact and cell function, that were analyzed functionally and by gene expression at mRNA and protein levels. We established a methodology to enable a ∼34-fold increase in cell density within the AELS over 11-13 days, maintaining cell viability. Optimized nutrient and oxygen provision were numerically modeled and tested experimentally, achieving a cell density at harvest of >45 million cells/mL beads; >5×10(10) cells were produced in 1100 mL of beads. This process is scalable to human size ([0.7-1]×10(11)). A short-term storage protocol at ambient temperature was established, enabling transport from laboratory to bedside over 48 h, appropriate for clinical translation of a manufactured bioartificial liver machine.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>23514704</pmid><doi>10.1089/biores.2012.0286</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2164-7844 |
ispartof | BioResearch open access, 2013-02, Vol.2 (1), p.1-11 |
issn | 2164-7844 2164-7860 2164-7860 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3569957 |
source | Mary Ann Liebert Online - Open Access; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bioengineering Original s |
title | Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioengineering%20the%20liver:%20scale-up%20and%20cool%20chain%20delivery%20of%20the%20liver%20cell%20biomass%20for%20clinical%20targeting%20in%20a%20bioartificial%20liver%20support%20system&rft.jtitle=BioResearch%20open%20access&rft.au=Erro,%20Eloy&rft.date=2013-02&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2164-7844&rft.eissn=2164-7860&rft_id=info:doi/10.1089/biores.2012.0286&rft_dat=%3Cproquest_pubme%3E1319164507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477561984&rft_id=info:pmid/23514704&rfr_iscdi=true |