Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration
HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-02, Vol.110 (6), p.E448-E457 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E457 |
---|---|
container_issue | 6 |
container_start_page | E448 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Weil, Amy F Ghosh, Devlina Zhou, Yan Seiple, Lauren McMahon, Moira A Spivak, Adam M Siliciano, Robert F Stivers, James T |
description | HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature. |
doi_str_mv | 10.1073/pnas.1219702110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3568341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885948941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-59d37f3789c4effc1d741dde8b2ea83c7f41b048af0d0ce20e7b90b4cd5e815b3</originalsourceid><addsrcrecordid>eNpVkc9vFCEYhonR2G317E1JPE_78WMG5mLS1No2adTErlfCADPSzMIIs5vsfy-TrWs9ceB5H97wIvSOwDkBwS6moPM5oaQVQAmBF2hFoCVVw1t4iVYAVFSSU36CTnN-BIC2lvAanVDGOGlIs0L7ddLGj_jz10s8jHsT837U2WEf_Oz17DK2bkja6tnHgGOPb-9-VgSbhTcxzLqAYcAbn30wMU0xlZDFdv3wHetg8ZTczoU5451PeizaedEtsjfoVa_H7N4-nWdo_eX64eq2uv92c3d1eV-ZmvG5qlvLRM-EbA13fW-IFZxY62RHnZbMiJ6TDrjUPVgwjoITXQsdN7Z2ktQdO0OfDt5p222cNaVNaaKm5Dc67VXUXv1_E_wvNcSdYnUjyzcVwccnQYq_ty7P6jFuUyidFaGSSwEg6kJdHCiTYs7J9ccXCKhlK7Vspf5tVRLvnxc78n_HeQYsyaOu-Bp1zbkswIcD0Ouo9JB8VusfFEgDQDipJWV_ACYlpgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284870075</pqid></control><display><type>article</type><title>Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration</title><source>PubMed Central (Open Access)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Weil, Amy F ; Ghosh, Devlina ; Zhou, Yan ; Seiple, Lauren ; McMahon, Moira A ; Spivak, Adam M ; Siliciano, Robert F ; Stivers, James T</creator><creatorcontrib>Weil, Amy F ; Ghosh, Devlina ; Zhou, Yan ; Seiple, Lauren ; McMahon, Moira A ; Spivak, Adam M ; Siliciano, Robert F ; Stivers, James T</creatorcontrib><description>HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1219702110</identifier><identifier>PMID: 23341616</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anti-HIV Agents - pharmacology ; Base Sequence ; Biological Sciences ; CD4-Positive T-Lymphocytes - drug effects ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - metabolism ; CD4-Positive T-Lymphocytes - virology ; Deoxyribonucleic acid ; Deoxyuracil Nucleotides - metabolism ; DNA ; DNA Glycosylases - antagonists & inhibitors ; DNA Glycosylases - genetics ; DNA Glycosylases - metabolism ; DNA, Viral - chemistry ; DNA, Viral - genetics ; DNA, Viral - metabolism ; Enzyme Inhibitors - pharmacology ; Gene Knockdown Techniques ; HIV ; HIV-1 - genetics ; HIV-1 - pathogenicity ; HIV-1 - physiology ; Host-Pathogen Interactions - genetics ; Host-Pathogen Interactions - immunology ; Host-Pathogen Interactions - physiology ; HT29 Cells ; Human immunodeficiency virus ; Humans ; Immunity, Innate ; Integration ; Macrophages - drug effects ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages - virology ; Models, Biological ; Mutation ; PNAS Plus ; Quinazolines - pharmacology ; Reverse Transcription ; T cell receptors ; Thiophenes - pharmacology ; Thymidine - metabolism ; Thymidine - pharmacology ; Thymidylate Synthase - antagonists & inhibitors ; Virion ; Virus Integration - physiology ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (6), p.E448-E457</ispartof><rights>Copyright National Academy of Sciences Feb 5, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-59d37f3789c4effc1d741dde8b2ea83c7f41b048af0d0ce20e7b90b4cd5e815b3</citedby><cites>FETCH-LOGICAL-c534t-59d37f3789c4effc1d741dde8b2ea83c7f41b048af0d0ce20e7b90b4cd5e815b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568341/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568341/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23341616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weil, Amy F</creatorcontrib><creatorcontrib>Ghosh, Devlina</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Seiple, Lauren</creatorcontrib><creatorcontrib>McMahon, Moira A</creatorcontrib><creatorcontrib>Spivak, Adam M</creatorcontrib><creatorcontrib>Siliciano, Robert F</creatorcontrib><creatorcontrib>Stivers, James T</creatorcontrib><title>Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.</description><subject>Anti-HIV Agents - pharmacology</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>CD4-Positive T-Lymphocytes - drug effects</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>CD4-Positive T-Lymphocytes - virology</subject><subject>Deoxyribonucleic acid</subject><subject>Deoxyuracil Nucleotides - metabolism</subject><subject>DNA</subject><subject>DNA Glycosylases - antagonists & inhibitors</subject><subject>DNA Glycosylases - genetics</subject><subject>DNA Glycosylases - metabolism</subject><subject>DNA, Viral - chemistry</subject><subject>DNA, Viral - genetics</subject><subject>DNA, Viral - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Gene Knockdown Techniques</subject><subject>HIV</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - pathogenicity</subject><subject>HIV-1 - physiology</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>HT29 Cells</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Integration</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - virology</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>PNAS Plus</subject><subject>Quinazolines - pharmacology</subject><subject>Reverse Transcription</subject><subject>T cell receptors</subject><subject>Thiophenes - pharmacology</subject><subject>Thymidine - metabolism</subject><subject>Thymidine - pharmacology</subject><subject>Thymidylate Synthase - antagonists & inhibitors</subject><subject>Virion</subject><subject>Virus Integration - physiology</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9vFCEYhonR2G317E1JPE_78WMG5mLS1No2adTErlfCADPSzMIIs5vsfy-TrWs9ceB5H97wIvSOwDkBwS6moPM5oaQVQAmBF2hFoCVVw1t4iVYAVFSSU36CTnN-BIC2lvAanVDGOGlIs0L7ddLGj_jz10s8jHsT837U2WEf_Oz17DK2bkja6tnHgGOPb-9-VgSbhTcxzLqAYcAbn30wMU0xlZDFdv3wHetg8ZTczoU5451PeizaedEtsjfoVa_H7N4-nWdo_eX64eq2uv92c3d1eV-ZmvG5qlvLRM-EbA13fW-IFZxY62RHnZbMiJ6TDrjUPVgwjoITXQsdN7Z2ktQdO0OfDt5p222cNaVNaaKm5Dc67VXUXv1_E_wvNcSdYnUjyzcVwccnQYq_ty7P6jFuUyidFaGSSwEg6kJdHCiTYs7J9ccXCKhlK7Vspf5tVRLvnxc78n_HeQYsyaOu-Bp1zbkswIcD0Ouo9JB8VusfFEgDQDipJWV_ACYlpgE</recordid><startdate>20130205</startdate><enddate>20130205</enddate><creator>Weil, Amy F</creator><creator>Ghosh, Devlina</creator><creator>Zhou, Yan</creator><creator>Seiple, Lauren</creator><creator>McMahon, Moira A</creator><creator>Spivak, Adam M</creator><creator>Siliciano, Robert F</creator><creator>Stivers, James T</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130205</creationdate><title>Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration</title><author>Weil, Amy F ; Ghosh, Devlina ; Zhou, Yan ; Seiple, Lauren ; McMahon, Moira A ; Spivak, Adam M ; Siliciano, Robert F ; Stivers, James T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-59d37f3789c4effc1d741dde8b2ea83c7f41b048af0d0ce20e7b90b4cd5e815b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anti-HIV Agents - pharmacology</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>CD4-Positive T-Lymphocytes - drug effects</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>CD4-Positive T-Lymphocytes - virology</topic><topic>Deoxyribonucleic acid</topic><topic>Deoxyuracil Nucleotides - metabolism</topic><topic>DNA</topic><topic>DNA Glycosylases - antagonists & inhibitors</topic><topic>DNA Glycosylases - genetics</topic><topic>DNA Glycosylases - metabolism</topic><topic>DNA, Viral - chemistry</topic><topic>DNA, Viral - genetics</topic><topic>DNA, Viral - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Gene Knockdown Techniques</topic><topic>HIV</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - pathogenicity</topic><topic>HIV-1 - physiology</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>HT29 Cells</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Integration</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - virology</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>PNAS Plus</topic><topic>Quinazolines - pharmacology</topic><topic>Reverse Transcription</topic><topic>T cell receptors</topic><topic>Thiophenes - pharmacology</topic><topic>Thymidine - metabolism</topic><topic>Thymidine - pharmacology</topic><topic>Thymidylate Synthase - antagonists & inhibitors</topic><topic>Virion</topic><topic>Virus Integration - physiology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weil, Amy F</creatorcontrib><creatorcontrib>Ghosh, Devlina</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Seiple, Lauren</creatorcontrib><creatorcontrib>McMahon, Moira A</creatorcontrib><creatorcontrib>Spivak, Adam M</creatorcontrib><creatorcontrib>Siliciano, Robert F</creatorcontrib><creatorcontrib>Stivers, James T</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weil, Amy F</au><au>Ghosh, Devlina</au><au>Zhou, Yan</au><au>Seiple, Lauren</au><au>McMahon, Moira A</au><au>Spivak, Adam M</au><au>Siliciano, Robert F</au><au>Stivers, James T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-02-05</date><risdate>2013</risdate><volume>110</volume><issue>6</issue><spage>E448</spage><epage>E457</epage><pages>E448-E457</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23341616</pmid><doi>10.1073/pnas.1219702110</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (6), p.E448-E457 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3568341 |
source | PubMed Central (Open Access); MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Anti-HIV Agents - pharmacology Base Sequence Biological Sciences CD4-Positive T-Lymphocytes - drug effects CD4-Positive T-Lymphocytes - immunology CD4-Positive T-Lymphocytes - metabolism CD4-Positive T-Lymphocytes - virology Deoxyribonucleic acid Deoxyuracil Nucleotides - metabolism DNA DNA Glycosylases - antagonists & inhibitors DNA Glycosylases - genetics DNA Glycosylases - metabolism DNA, Viral - chemistry DNA, Viral - genetics DNA, Viral - metabolism Enzyme Inhibitors - pharmacology Gene Knockdown Techniques HIV HIV-1 - genetics HIV-1 - pathogenicity HIV-1 - physiology Host-Pathogen Interactions - genetics Host-Pathogen Interactions - immunology Host-Pathogen Interactions - physiology HT29 Cells Human immunodeficiency virus Humans Immunity, Innate Integration Macrophages - drug effects Macrophages - immunology Macrophages - metabolism Macrophages - virology Models, Biological Mutation PNAS Plus Quinazolines - pharmacology Reverse Transcription T cell receptors Thiophenes - pharmacology Thymidine - metabolism Thymidine - pharmacology Thymidylate Synthase - antagonists & inhibitors Virion Virus Integration - physiology Viruses |
title | Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uracil%20DNA%20glycosylase%20initiates%20degradation%20of%20HIV-1%20cDNA%20containing%20misincorporated%20dUTP%20and%20prevents%20viral%20integration&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Weil,%20Amy%20F&rft.date=2013-02-05&rft.volume=110&rft.issue=6&rft.spage=E448&rft.epage=E457&rft.pages=E448-E457&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1219702110&rft_dat=%3Cproquest_pubme%3E2885948941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284870075&rft_id=info:pmid/23341616&rfr_iscdi=true |