In vivo imaging of the rodent eye with swept source/Fourier domain OCT
Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial reso...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2013-02, Vol.4 (2), p.351-363 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | 2 |
container_start_page | 351 |
container_title | Biomedical optics express |
container_volume | 4 |
creator | Liu, Jonathan J Grulkowski, Ireneusz Kraus, Martin F Potsaid, Benjamin Lu, Chen D Baumann, Bernhard Duker, Jay S Hornegger, Joachim Fujimoto, James G |
description | Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid. |
doi_str_mv | 10.1364/BOE.4.000351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1288314768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a5fcf2a806f73ae980ffce28d109dc34d7f23d758286cb613cbaa429e508c7b03</originalsourceid><addsrcrecordid>eNpVkM9PwjAYhhujEYLcPJsePTjor63lYqIElISEC56brmuhZlux3TD8986ABE_fl3xP3u_NA8A9RiNMMzZ-Xc1GbIQQoim-An2C0yzhSKTXF3sPDGP87BjEGEdU3IIeoQwTzkUfzBc13Lu9h65SG1dvoLew2RoYfGHqBpqDgd-u2cL4bXYNjL4N2ozn3XAmwMJXytVwNV3fgRurymiGpzkAH_PZevqeLFdvi-nLMtFUsCZRqdWWKIEyy6kyE4Gs1YaIAqNJoSkruCW04KkgItN5hqnOlWJkYlIkNM8RHYDnY-6uzStT6K5jUKXcha5-OEivnPx_qd1Wbvxe0jTjnOAu4PEUEPxXa2IjKxe1KUtVG99GiYkQFDOeiQ59OqI6-BiDsec3GMlf-7KzL5k82u_wh8tqZ_jPNf0BZt9__g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288314768</pqid></control><display><type>article</type><title>In vivo imaging of the rodent eye with swept source/Fourier domain OCT</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liu, Jonathan J ; Grulkowski, Ireneusz ; Kraus, Martin F ; Potsaid, Benjamin ; Lu, Chen D ; Baumann, Bernhard ; Duker, Jay S ; Hornegger, Joachim ; Fujimoto, James G</creator><creatorcontrib>Liu, Jonathan J ; Grulkowski, Ireneusz ; Kraus, Martin F ; Potsaid, Benjamin ; Lu, Chen D ; Baumann, Bernhard ; Duker, Jay S ; Hornegger, Joachim ; Fujimoto, James G</creatorcontrib><description>Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.4.000351</identifier><identifier>PMID: 23412778</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Ophthalmology Applications</subject><ispartof>Biomedical optics express, 2013-02, Vol.4 (2), p.351-363</ispartof><rights>2013 Optical Society of America 2013 OSA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a5fcf2a806f73ae980ffce28d109dc34d7f23d758286cb613cbaa429e508c7b03</citedby><cites>FETCH-LOGICAL-c384t-a5fcf2a806f73ae980ffce28d109dc34d7f23d758286cb613cbaa429e508c7b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567721/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567721/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23412778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jonathan J</creatorcontrib><creatorcontrib>Grulkowski, Ireneusz</creatorcontrib><creatorcontrib>Kraus, Martin F</creatorcontrib><creatorcontrib>Potsaid, Benjamin</creatorcontrib><creatorcontrib>Lu, Chen D</creatorcontrib><creatorcontrib>Baumann, Bernhard</creatorcontrib><creatorcontrib>Duker, Jay S</creatorcontrib><creatorcontrib>Hornegger, Joachim</creatorcontrib><creatorcontrib>Fujimoto, James G</creatorcontrib><title>In vivo imaging of the rodent eye with swept source/Fourier domain OCT</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid.</description><subject>Ophthalmology Applications</subject><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkM9PwjAYhhujEYLcPJsePTjor63lYqIElISEC56brmuhZlux3TD8986ABE_fl3xP3u_NA8A9RiNMMzZ-Xc1GbIQQoim-An2C0yzhSKTXF3sPDGP87BjEGEdU3IIeoQwTzkUfzBc13Lu9h65SG1dvoLew2RoYfGHqBpqDgd-u2cL4bXYNjL4N2ozn3XAmwMJXytVwNV3fgRurymiGpzkAH_PZevqeLFdvi-nLMtFUsCZRqdWWKIEyy6kyE4Gs1YaIAqNJoSkruCW04KkgItN5hqnOlWJkYlIkNM8RHYDnY-6uzStT6K5jUKXcha5-OEivnPx_qd1Wbvxe0jTjnOAu4PEUEPxXa2IjKxe1KUtVG99GiYkQFDOeiQ59OqI6-BiDsec3GMlf-7KzL5k82u_wh8tqZ_jPNf0BZt9__g</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Liu, Jonathan J</creator><creator>Grulkowski, Ireneusz</creator><creator>Kraus, Martin F</creator><creator>Potsaid, Benjamin</creator><creator>Lu, Chen D</creator><creator>Baumann, Bernhard</creator><creator>Duker, Jay S</creator><creator>Hornegger, Joachim</creator><creator>Fujimoto, James G</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>In vivo imaging of the rodent eye with swept source/Fourier domain OCT</title><author>Liu, Jonathan J ; Grulkowski, Ireneusz ; Kraus, Martin F ; Potsaid, Benjamin ; Lu, Chen D ; Baumann, Bernhard ; Duker, Jay S ; Hornegger, Joachim ; Fujimoto, James G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a5fcf2a806f73ae980ffce28d109dc34d7f23d758286cb613cbaa429e508c7b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ophthalmology Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jonathan J</creatorcontrib><creatorcontrib>Grulkowski, Ireneusz</creatorcontrib><creatorcontrib>Kraus, Martin F</creatorcontrib><creatorcontrib>Potsaid, Benjamin</creatorcontrib><creatorcontrib>Lu, Chen D</creatorcontrib><creatorcontrib>Baumann, Bernhard</creatorcontrib><creatorcontrib>Duker, Jay S</creatorcontrib><creatorcontrib>Hornegger, Joachim</creatorcontrib><creatorcontrib>Fujimoto, James G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jonathan J</au><au>Grulkowski, Ireneusz</au><au>Kraus, Martin F</au><au>Potsaid, Benjamin</au><au>Lu, Chen D</au><au>Baumann, Bernhard</au><au>Duker, Jay S</au><au>Hornegger, Joachim</au><au>Fujimoto, James G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo imaging of the rodent eye with swept source/Fourier domain OCT</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>4</volume><issue>2</issue><spage>351</spage><epage>363</epage><pages>351-363</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>23412778</pmid><doi>10.1364/BOE.4.000351</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2013-02, Vol.4 (2), p.351-363 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567721 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Ophthalmology Applications |
title | In vivo imaging of the rodent eye with swept source/Fourier domain OCT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20imaging%20of%20the%20rodent%20eye%20with%20swept%20source/Fourier%20domain%20OCT&rft.jtitle=Biomedical%20optics%20express&rft.au=Liu,%20Jonathan%20J&rft.date=2013-02-01&rft.volume=4&rft.issue=2&rft.spage=351&rft.epage=363&rft.pages=351-363&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.4.000351&rft_dat=%3Cproquest_pubme%3E1288314768%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288314768&rft_id=info:pmid/23412778&rfr_iscdi=true |