Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins

Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-02, Vol.288 (6), p.3696-3704
Hauptverfasser: Owatworakit, Amorn, Townsend, Belinda, Louveau, Thomas, Jenner, Helen, Rejzek, Martin, Hughes, Richard K., Saalbach, Gerhard, Qi, Xiaoquan, Bakht, Saleha, Roy, Abhijeet Deb, Mugford, Sam T., Goss, Rebecca J.M., Field, Robert A., Osbourn, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3704
container_issue 6
container_start_page 3696
container_title The Journal of biological chemistry
container_volume 288
creator Owatworakit, Amorn
Townsend, Belinda
Louveau, Thomas
Jenner, Helen
Rejzek, Martin
Hughes, Richard K.
Saalbach, Gerhard
Qi, Xiaoquan
Bakht, Saleha
Roy, Abhijeet Deb
Mugford, Sam T.
Goss, Rebecca J.M.
Field, Robert A.
Osbourn, Anne
description Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism. Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat. Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation. Significance: These findings open up new opportunities for metabolic engineering for disease control.
doi_str_mv 10.1074/jbc.M112.426155
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820463318</els_id><sourcerecordid>1286943602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</originalsourceid><addsrcrecordid>eNp1kU1vFDEMhiMEokvhzA3lWA6zjZ35SC5Iq6qUSoVeQOIWZTIemmomWZLZlfbfk7KlggO-WLIfv7b8MvYWxBpEV5_f9279GQDXNbbQNM_YCoSSlWzg-3O2EgKh0tioE_Yq53tRotbwkp2gLMVGNiv25Wo6uJgP05JsyCMlmynzMcWZ39qFn232FOx7fj1vJ-_sQgP3gS93xDfuMNnFx8DjyH9Tzof8mr0Y7ZTpzWM-Zd8-Xn69-FTd3F5dX2xuKlfXcqmUkohjpwZlLTlAW_dS67aziH3XglOo1Ti0NYw9gEYkVeBeQ6ERUHTylH046m53_UyDo1Dun8w2-dmmg4nWm387wd-ZH3FvZNN2LTZF4OxRIMWfO8qLmX12NE02UNxlA6haXctWYEHPj6hLMedE49MaEObBBVNcMA8umKMLZeLd39c98X_eXgB9BKj8aO8pmew8BUeDT-QWM0T_X_FfPfaWxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286943602</pqid></control><display><type>article</type><title>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Owatworakit, Amorn ; Townsend, Belinda ; Louveau, Thomas ; Jenner, Helen ; Rejzek, Martin ; Hughes, Richard K. ; Saalbach, Gerhard ; Qi, Xiaoquan ; Bakht, Saleha ; Roy, Abhijeet Deb ; Mugford, Sam T. ; Goss, Rebecca J.M. ; Field, Robert A. ; Osbourn, Anne</creator><creatorcontrib>Owatworakit, Amorn ; Townsend, Belinda ; Louveau, Thomas ; Jenner, Helen ; Rejzek, Martin ; Hughes, Richard K. ; Saalbach, Gerhard ; Qi, Xiaoquan ; Bakht, Saleha ; Roy, Abhijeet Deb ; Mugford, Sam T. ; Goss, Rebecca J.M. ; Field, Robert A. ; Osbourn, Anne</creatorcontrib><description>Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism. Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat. Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation. Significance: These findings open up new opportunities for metabolic engineering for disease control.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.426155</identifier><identifier>PMID: 23258535</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acylation - physiology ; Antibiotics ; Avena - enzymology ; Avena - genetics ; Cereals ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Gene Expression Regulation, Enzymologic - physiology ; Gene Expression Regulation, Plant - physiology ; Glycosyltransferases ; Glycosyltransferases - biosynthesis ; Glycosyltransferases - genetics ; Metabolic Engineering ; Multigene Family - physiology ; Plant ; Plant Biology ; Plant Defense ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - enzymology ; Plant Roots - genetics ; Saponins ; Saponins - genetics ; Saponins - metabolism ; Terpenoids</subject><ispartof>The Journal of biological chemistry, 2013-02, Vol.288 (6), p.3696-3704</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</citedby><cites>FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567625/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567625/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23258535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owatworakit, Amorn</creatorcontrib><creatorcontrib>Townsend, Belinda</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Jenner, Helen</creatorcontrib><creatorcontrib>Rejzek, Martin</creatorcontrib><creatorcontrib>Hughes, Richard K.</creatorcontrib><creatorcontrib>Saalbach, Gerhard</creatorcontrib><creatorcontrib>Qi, Xiaoquan</creatorcontrib><creatorcontrib>Bakht, Saleha</creatorcontrib><creatorcontrib>Roy, Abhijeet Deb</creatorcontrib><creatorcontrib>Mugford, Sam T.</creatorcontrib><creatorcontrib>Goss, Rebecca J.M.</creatorcontrib><creatorcontrib>Field, Robert A.</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><title>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism. Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat. Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation. Significance: These findings open up new opportunities for metabolic engineering for disease control.</description><subject>Acylation - physiology</subject><subject>Antibiotics</subject><subject>Avena - enzymology</subject><subject>Avena - genetics</subject><subject>Cereals</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Glycosyltransferases</subject><subject>Glycosyltransferases - biosynthesis</subject><subject>Glycosyltransferases - genetics</subject><subject>Metabolic Engineering</subject><subject>Multigene Family - physiology</subject><subject>Plant</subject><subject>Plant Biology</subject><subject>Plant Defense</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - genetics</subject><subject>Saponins</subject><subject>Saponins - genetics</subject><subject>Saponins - metabolism</subject><subject>Terpenoids</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1vFDEMhiMEokvhzA3lWA6zjZ35SC5Iq6qUSoVeQOIWZTIemmomWZLZlfbfk7KlggO-WLIfv7b8MvYWxBpEV5_f9279GQDXNbbQNM_YCoSSlWzg-3O2EgKh0tioE_Yq53tRotbwkp2gLMVGNiv25Wo6uJgP05JsyCMlmynzMcWZ39qFn232FOx7fj1vJ-_sQgP3gS93xDfuMNnFx8DjyH9Tzof8mr0Y7ZTpzWM-Zd8-Xn69-FTd3F5dX2xuKlfXcqmUkohjpwZlLTlAW_dS67aziH3XglOo1Ti0NYw9gEYkVeBeQ6ERUHTylH046m53_UyDo1Dun8w2-dmmg4nWm387wd-ZH3FvZNN2LTZF4OxRIMWfO8qLmX12NE02UNxlA6haXctWYEHPj6hLMedE49MaEObBBVNcMA8umKMLZeLd39c98X_eXgB9BKj8aO8pmew8BUeDT-QWM0T_X_FfPfaWxw</recordid><startdate>20130208</startdate><enddate>20130208</enddate><creator>Owatworakit, Amorn</creator><creator>Townsend, Belinda</creator><creator>Louveau, Thomas</creator><creator>Jenner, Helen</creator><creator>Rejzek, Martin</creator><creator>Hughes, Richard K.</creator><creator>Saalbach, Gerhard</creator><creator>Qi, Xiaoquan</creator><creator>Bakht, Saleha</creator><creator>Roy, Abhijeet Deb</creator><creator>Mugford, Sam T.</creator><creator>Goss, Rebecca J.M.</creator><creator>Field, Robert A.</creator><creator>Osbourn, Anne</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130208</creationdate><title>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</title><author>Owatworakit, Amorn ; Townsend, Belinda ; Louveau, Thomas ; Jenner, Helen ; Rejzek, Martin ; Hughes, Richard K. ; Saalbach, Gerhard ; Qi, Xiaoquan ; Bakht, Saleha ; Roy, Abhijeet Deb ; Mugford, Sam T. ; Goss, Rebecca J.M. ; Field, Robert A. ; Osbourn, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acylation - physiology</topic><topic>Antibiotics</topic><topic>Avena - enzymology</topic><topic>Avena - genetics</topic><topic>Cereals</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Glycosyltransferases</topic><topic>Glycosyltransferases - biosynthesis</topic><topic>Glycosyltransferases - genetics</topic><topic>Metabolic Engineering</topic><topic>Multigene Family - physiology</topic><topic>Plant</topic><topic>Plant Biology</topic><topic>Plant Defense</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - genetics</topic><topic>Saponins</topic><topic>Saponins - genetics</topic><topic>Saponins - metabolism</topic><topic>Terpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owatworakit, Amorn</creatorcontrib><creatorcontrib>Townsend, Belinda</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Jenner, Helen</creatorcontrib><creatorcontrib>Rejzek, Martin</creatorcontrib><creatorcontrib>Hughes, Richard K.</creatorcontrib><creatorcontrib>Saalbach, Gerhard</creatorcontrib><creatorcontrib>Qi, Xiaoquan</creatorcontrib><creatorcontrib>Bakht, Saleha</creatorcontrib><creatorcontrib>Roy, Abhijeet Deb</creatorcontrib><creatorcontrib>Mugford, Sam T.</creatorcontrib><creatorcontrib>Goss, Rebecca J.M.</creatorcontrib><creatorcontrib>Field, Robert A.</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owatworakit, Amorn</au><au>Townsend, Belinda</au><au>Louveau, Thomas</au><au>Jenner, Helen</au><au>Rejzek, Martin</au><au>Hughes, Richard K.</au><au>Saalbach, Gerhard</au><au>Qi, Xiaoquan</au><au>Bakht, Saleha</au><au>Roy, Abhijeet Deb</au><au>Mugford, Sam T.</au><au>Goss, Rebecca J.M.</au><au>Field, Robert A.</au><au>Osbourn, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-02-08</date><risdate>2013</risdate><volume>288</volume><issue>6</issue><spage>3696</spage><epage>3704</epage><pages>3696-3704</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism. Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat. Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation. Significance: These findings open up new opportunities for metabolic engineering for disease control.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23258535</pmid><doi>10.1074/jbc.M112.426155</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-02, Vol.288 (6), p.3696-3704
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567625
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acylation - physiology
Antibiotics
Avena - enzymology
Avena - genetics
Cereals
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Gene Expression Regulation, Enzymologic - physiology
Gene Expression Regulation, Plant - physiology
Glycosyltransferases
Glycosyltransferases - biosynthesis
Glycosyltransferases - genetics
Metabolic Engineering
Multigene Family - physiology
Plant
Plant Biology
Plant Defense
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - enzymology
Plant Roots - genetics
Saponins
Saponins - genetics
Saponins - metabolism
Terpenoids
title Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosyltransferases%20from%20Oat%20(Avena)%20Implicated%20in%20the%20Acylation%20of%20Avenacins&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Owatworakit,%20Amorn&rft.date=2013-02-08&rft.volume=288&rft.issue=6&rft.spage=3696&rft.epage=3704&rft.pages=3696-3704&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.426155&rft_dat=%3Cproquest_pubme%3E1286943602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286943602&rft_id=info:pmid/23258535&rft_els_id=S0021925820463318&rfr_iscdi=true