Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins
Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-02, Vol.288 (6), p.3696-3704 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3704 |
---|---|
container_issue | 6 |
container_start_page | 3696 |
container_title | The Journal of biological chemistry |
container_volume | 288 |
creator | Owatworakit, Amorn Townsend, Belinda Louveau, Thomas Jenner, Helen Rejzek, Martin Hughes, Richard K. Saalbach, Gerhard Qi, Xiaoquan Bakht, Saleha Roy, Abhijeet Deb Mugford, Sam T. Goss, Rebecca J.M. Field, Robert A. Osbourn, Anne |
description | Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.
Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism.
Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat.
Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation.
Significance: These findings open up new opportunities for metabolic engineering for disease control. |
doi_str_mv | 10.1074/jbc.M112.426155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820463318</els_id><sourcerecordid>1286943602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</originalsourceid><addsrcrecordid>eNp1kU1vFDEMhiMEokvhzA3lWA6zjZ35SC5Iq6qUSoVeQOIWZTIemmomWZLZlfbfk7KlggO-WLIfv7b8MvYWxBpEV5_f9279GQDXNbbQNM_YCoSSlWzg-3O2EgKh0tioE_Yq53tRotbwkp2gLMVGNiv25Wo6uJgP05JsyCMlmynzMcWZ39qFn232FOx7fj1vJ-_sQgP3gS93xDfuMNnFx8DjyH9Tzof8mr0Y7ZTpzWM-Zd8-Xn69-FTd3F5dX2xuKlfXcqmUkohjpwZlLTlAW_dS67aziH3XglOo1Ti0NYw9gEYkVeBeQ6ERUHTylH046m53_UyDo1Dun8w2-dmmg4nWm387wd-ZH3FvZNN2LTZF4OxRIMWfO8qLmX12NE02UNxlA6haXctWYEHPj6hLMedE49MaEObBBVNcMA8umKMLZeLd39c98X_eXgB9BKj8aO8pmew8BUeDT-QWM0T_X_FfPfaWxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286943602</pqid></control><display><type>article</type><title>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Owatworakit, Amorn ; Townsend, Belinda ; Louveau, Thomas ; Jenner, Helen ; Rejzek, Martin ; Hughes, Richard K. ; Saalbach, Gerhard ; Qi, Xiaoquan ; Bakht, Saleha ; Roy, Abhijeet Deb ; Mugford, Sam T. ; Goss, Rebecca J.M. ; Field, Robert A. ; Osbourn, Anne</creator><creatorcontrib>Owatworakit, Amorn ; Townsend, Belinda ; Louveau, Thomas ; Jenner, Helen ; Rejzek, Martin ; Hughes, Richard K. ; Saalbach, Gerhard ; Qi, Xiaoquan ; Bakht, Saleha ; Roy, Abhijeet Deb ; Mugford, Sam T. ; Goss, Rebecca J.M. ; Field, Robert A. ; Osbourn, Anne</creatorcontrib><description>Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.
Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism.
Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat.
Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation.
Significance: These findings open up new opportunities for metabolic engineering for disease control.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.426155</identifier><identifier>PMID: 23258535</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acylation - physiology ; Antibiotics ; Avena - enzymology ; Avena - genetics ; Cereals ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Gene Expression Regulation, Enzymologic - physiology ; Gene Expression Regulation, Plant - physiology ; Glycosyltransferases ; Glycosyltransferases - biosynthesis ; Glycosyltransferases - genetics ; Metabolic Engineering ; Multigene Family - physiology ; Plant ; Plant Biology ; Plant Defense ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - enzymology ; Plant Roots - genetics ; Saponins ; Saponins - genetics ; Saponins - metabolism ; Terpenoids</subject><ispartof>The Journal of biological chemistry, 2013-02, Vol.288 (6), p.3696-3704</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</citedby><cites>FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567625/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567625/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23258535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owatworakit, Amorn</creatorcontrib><creatorcontrib>Townsend, Belinda</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Jenner, Helen</creatorcontrib><creatorcontrib>Rejzek, Martin</creatorcontrib><creatorcontrib>Hughes, Richard K.</creatorcontrib><creatorcontrib>Saalbach, Gerhard</creatorcontrib><creatorcontrib>Qi, Xiaoquan</creatorcontrib><creatorcontrib>Bakht, Saleha</creatorcontrib><creatorcontrib>Roy, Abhijeet Deb</creatorcontrib><creatorcontrib>Mugford, Sam T.</creatorcontrib><creatorcontrib>Goss, Rebecca J.M.</creatorcontrib><creatorcontrib>Field, Robert A.</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><title>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.
Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism.
Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat.
Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation.
Significance: These findings open up new opportunities for metabolic engineering for disease control.</description><subject>Acylation - physiology</subject><subject>Antibiotics</subject><subject>Avena - enzymology</subject><subject>Avena - genetics</subject><subject>Cereals</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Glycosyltransferases</subject><subject>Glycosyltransferases - biosynthesis</subject><subject>Glycosyltransferases - genetics</subject><subject>Metabolic Engineering</subject><subject>Multigene Family - physiology</subject><subject>Plant</subject><subject>Plant Biology</subject><subject>Plant Defense</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - genetics</subject><subject>Saponins</subject><subject>Saponins - genetics</subject><subject>Saponins - metabolism</subject><subject>Terpenoids</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1vFDEMhiMEokvhzA3lWA6zjZ35SC5Iq6qUSoVeQOIWZTIemmomWZLZlfbfk7KlggO-WLIfv7b8MvYWxBpEV5_f9279GQDXNbbQNM_YCoSSlWzg-3O2EgKh0tioE_Yq53tRotbwkp2gLMVGNiv25Wo6uJgP05JsyCMlmynzMcWZ39qFn232FOx7fj1vJ-_sQgP3gS93xDfuMNnFx8DjyH9Tzof8mr0Y7ZTpzWM-Zd8-Xn69-FTd3F5dX2xuKlfXcqmUkohjpwZlLTlAW_dS67aziH3XglOo1Ti0NYw9gEYkVeBeQ6ERUHTylH046m53_UyDo1Dun8w2-dmmg4nWm387wd-ZH3FvZNN2LTZF4OxRIMWfO8qLmX12NE02UNxlA6haXctWYEHPj6hLMedE49MaEObBBVNcMA8umKMLZeLd39c98X_eXgB9BKj8aO8pmew8BUeDT-QWM0T_X_FfPfaWxw</recordid><startdate>20130208</startdate><enddate>20130208</enddate><creator>Owatworakit, Amorn</creator><creator>Townsend, Belinda</creator><creator>Louveau, Thomas</creator><creator>Jenner, Helen</creator><creator>Rejzek, Martin</creator><creator>Hughes, Richard K.</creator><creator>Saalbach, Gerhard</creator><creator>Qi, Xiaoquan</creator><creator>Bakht, Saleha</creator><creator>Roy, Abhijeet Deb</creator><creator>Mugford, Sam T.</creator><creator>Goss, Rebecca J.M.</creator><creator>Field, Robert A.</creator><creator>Osbourn, Anne</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130208</creationdate><title>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</title><author>Owatworakit, Amorn ; Townsend, Belinda ; Louveau, Thomas ; Jenner, Helen ; Rejzek, Martin ; Hughes, Richard K. ; Saalbach, Gerhard ; Qi, Xiaoquan ; Bakht, Saleha ; Roy, Abhijeet Deb ; Mugford, Sam T. ; Goss, Rebecca J.M. ; Field, Robert A. ; Osbourn, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-88322f78d8aaec12a4b39967a22b761c8298fd641fb11922e8f78b91aae212073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acylation - physiology</topic><topic>Antibiotics</topic><topic>Avena - enzymology</topic><topic>Avena - genetics</topic><topic>Cereals</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Glycosyltransferases</topic><topic>Glycosyltransferases - biosynthesis</topic><topic>Glycosyltransferases - genetics</topic><topic>Metabolic Engineering</topic><topic>Multigene Family - physiology</topic><topic>Plant</topic><topic>Plant Biology</topic><topic>Plant Defense</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - genetics</topic><topic>Saponins</topic><topic>Saponins - genetics</topic><topic>Saponins - metabolism</topic><topic>Terpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owatworakit, Amorn</creatorcontrib><creatorcontrib>Townsend, Belinda</creatorcontrib><creatorcontrib>Louveau, Thomas</creatorcontrib><creatorcontrib>Jenner, Helen</creatorcontrib><creatorcontrib>Rejzek, Martin</creatorcontrib><creatorcontrib>Hughes, Richard K.</creatorcontrib><creatorcontrib>Saalbach, Gerhard</creatorcontrib><creatorcontrib>Qi, Xiaoquan</creatorcontrib><creatorcontrib>Bakht, Saleha</creatorcontrib><creatorcontrib>Roy, Abhijeet Deb</creatorcontrib><creatorcontrib>Mugford, Sam T.</creatorcontrib><creatorcontrib>Goss, Rebecca J.M.</creatorcontrib><creatorcontrib>Field, Robert A.</creatorcontrib><creatorcontrib>Osbourn, Anne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owatworakit, Amorn</au><au>Townsend, Belinda</au><au>Louveau, Thomas</au><au>Jenner, Helen</au><au>Rejzek, Martin</au><au>Hughes, Richard K.</au><au>Saalbach, Gerhard</au><au>Qi, Xiaoquan</au><au>Bakht, Saleha</au><au>Roy, Abhijeet Deb</au><au>Mugford, Sam T.</au><au>Goss, Rebecca J.M.</au><au>Field, Robert A.</au><au>Osbourn, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-02-08</date><risdate>2013</risdate><volume>288</volume><issue>6</issue><spage>3696</spage><epage>3704</epage><pages>3696-3704</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.
Background: Glycosyltransferases (GTs) have important functions in plant secondary metabolism.
Results: A gene encoding an N-methylanthranilic acid O-glucosyltransferase forms part of a biosynthetic cluster for the synthesis of acylated defense compounds in oat.
Conclusion: This GT synthesizes the activated acyl donor required for triterpene acylation.
Significance: These findings open up new opportunities for metabolic engineering for disease control.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23258535</pmid><doi>10.1074/jbc.M112.426155</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2013-02, Vol.288 (6), p.3696-3704 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567625 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acylation - physiology Antibiotics Avena - enzymology Avena - genetics Cereals Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Gene Expression Regulation, Enzymologic - physiology Gene Expression Regulation, Plant - physiology Glycosyltransferases Glycosyltransferases - biosynthesis Glycosyltransferases - genetics Metabolic Engineering Multigene Family - physiology Plant Plant Biology Plant Defense Plant Proteins - genetics Plant Proteins - metabolism Plant Roots - enzymology Plant Roots - genetics Saponins Saponins - genetics Saponins - metabolism Terpenoids |
title | Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosyltransferases%20from%20Oat%20(Avena)%20Implicated%20in%20the%20Acylation%20of%20Avenacins&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Owatworakit,%20Amorn&rft.date=2013-02-08&rft.volume=288&rft.issue=6&rft.spage=3696&rft.epage=3704&rft.pages=3696-3704&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.426155&rft_dat=%3Cproquest_pubme%3E1286943602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286943602&rft_id=info:pmid/23258535&rft_els_id=S0021925820463318&rfr_iscdi=true |