Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation

Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2013-02, Vol.32 (3), p.437-449
Hauptverfasser: Oppikofer, Mariano, Kueng, Stephanie, Keusch, Jeremy J, Hassler, Markus, Ladurner, Andreas G, Gut, Heinz, Gasser, Susan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 3
container_start_page 437
container_title The EMBO journal
container_volume 32
creator Oppikofer, Mariano
Kueng, Stephanie
Keusch, Jeremy J
Hassler, Markus
Ladurner, Andreas G
Gut, Heinz
Gasser, Susan M
description Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo . Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in s ir3 Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation. Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.
doi_str_mv 10.1038/emboj.2012.343
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315617140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxS3ExMrgyhFZ4sIlnX_Fji9IUEZZNQYSIBAXy3ac1SWJh51uK3_93GWrBhLiZFn-vPd9_j4AnmE0xYhWh64zYTUlCJMpZfQBmGDGUUGQKB-CCSIcFwxXch88TmmFECorgR-BfUKJlJLhCWjf-s5F_1sPPvQwNPCzjxReeA39kOCsGFzsfK9beOn7M1fDpWv9FaxDp30PfYIuJdcPPgNNiHDjdBoyk1XBLmOmhozll-7G_wnYa3Sb3NPb8wB8fXf0Zfa-OPk4P569PilsKQQtSoulrpmQiGvuiK2bpjLCIG6INEZS3ghLqprXTksrDKusJBk3zErd4ArRA_Bq9D1fm87VNieMulXn0Xc6blTQXv350vulOgsXipZcMCmzwctbgxh-rV0aVOeTdW2rexfWSWGKS44FZttZL_5CV2Ed88YyRaq8biI4ztR0pGwMKUXX7MJgpLZFqpsi1bZIlYvMguf3v7DD75rLgBiBS9-6zX_s1NGHN4vtZbQ-HJUpi3Kp8V7if4UpRoVPg7vazdLxp-KCilJ9O52rxZx-4qffF-oHvQZEX8x1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288712761</pqid></control><display><type>article</type><title>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</title><source>Springer Nature OA Free Journals</source><creator>Oppikofer, Mariano ; Kueng, Stephanie ; Keusch, Jeremy J ; Hassler, Markus ; Ladurner, Andreas G ; Gut, Heinz ; Gasser, Susan M</creator><creatorcontrib>Oppikofer, Mariano ; Kueng, Stephanie ; Keusch, Jeremy J ; Hassler, Markus ; Ladurner, Andreas G ; Gut, Heinz ; Gasser, Susan M</creatorcontrib><description>Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo . Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in s ir3 Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation. Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2012.343</identifier><identifier>PMID: 23299941</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Amino Acid Sequence ; Amino acids ; Chromatin ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Crystallization ; Deoxyribonucleic acid ; Dimerization ; DNA ; DNA Primers - genetics ; EMBO09 ; EMBO31 ; Evolution, Molecular ; Gene Silencing - physiology ; Genetic Complementation Test ; heterochromatin ; Heterochromatin - genetics ; Heterochromatin - physiology ; Immunoprecipitation ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Mutagenesis ; Nucleosomes - metabolism ; Orc1 ; Polymerase Chain Reaction ; Protein Conformation ; Saccharomyces cerevisiae ; Sequence Alignment ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism ; Sir3 ; winged helix-turn-helix ; Yeast ; Yeasts</subject><ispartof>The EMBO journal, 2013-02, Vol.32 (3), p.437-449</ispartof><rights>European Molecular Biology Organization 2013</rights><rights>Copyright © 2013 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Feb 6, 2013</rights><rights>Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</citedby><cites>FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567499/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567499/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/emboj.2012.343$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23299941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oppikofer, Mariano</creatorcontrib><creatorcontrib>Kueng, Stephanie</creatorcontrib><creatorcontrib>Keusch, Jeremy J</creatorcontrib><creatorcontrib>Hassler, Markus</creatorcontrib><creatorcontrib>Ladurner, Andreas G</creatorcontrib><creatorcontrib>Gut, Heinz</creatorcontrib><creatorcontrib>Gasser, Susan M</creatorcontrib><title>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo . Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in s ir3 Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation. Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Crystallization</subject><subject>Deoxyribonucleic acid</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA Primers - genetics</subject><subject>EMBO09</subject><subject>EMBO31</subject><subject>Evolution, Molecular</subject><subject>Gene Silencing - physiology</subject><subject>Genetic Complementation Test</subject><subject>heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - physiology</subject><subject>Immunoprecipitation</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nucleosomes - metabolism</subject><subject>Orc1</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Conformation</subject><subject>Saccharomyces cerevisiae</subject><subject>Sequence Alignment</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</subject><subject>Sir3</subject><subject>winged helix-turn-helix</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9v0zAcxS3ExMrgyhFZ4sIlnX_Fji9IUEZZNQYSIBAXy3ac1SWJh51uK3_93GWrBhLiZFn-vPd9_j4AnmE0xYhWh64zYTUlCJMpZfQBmGDGUUGQKB-CCSIcFwxXch88TmmFECorgR-BfUKJlJLhCWjf-s5F_1sPPvQwNPCzjxReeA39kOCsGFzsfK9beOn7M1fDpWv9FaxDp30PfYIuJdcPPgNNiHDjdBoyk1XBLmOmhozll-7G_wnYa3Sb3NPb8wB8fXf0Zfa-OPk4P569PilsKQQtSoulrpmQiGvuiK2bpjLCIG6INEZS3ghLqprXTksrDKusJBk3zErd4ArRA_Bq9D1fm87VNieMulXn0Xc6blTQXv350vulOgsXipZcMCmzwctbgxh-rV0aVOeTdW2rexfWSWGKS44FZttZL_5CV2Ed88YyRaq8biI4ztR0pGwMKUXX7MJgpLZFqpsi1bZIlYvMguf3v7DD75rLgBiBS9-6zX_s1NGHN4vtZbQ-HJUpi3Kp8V7if4UpRoVPg7vazdLxp-KCilJ9O52rxZx-4qffF-oHvQZEX8x1</recordid><startdate>20130206</startdate><enddate>20130206</enddate><creator>Oppikofer, Mariano</creator><creator>Kueng, Stephanie</creator><creator>Keusch, Jeremy J</creator><creator>Hassler, Markus</creator><creator>Ladurner, Andreas G</creator><creator>Gut, Heinz</creator><creator>Gasser, Susan M</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130206</creationdate><title>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</title><author>Oppikofer, Mariano ; Kueng, Stephanie ; Keusch, Jeremy J ; Hassler, Markus ; Ladurner, Andreas G ; Gut, Heinz ; Gasser, Susan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Crystallization</topic><topic>Deoxyribonucleic acid</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA Primers - genetics</topic><topic>EMBO09</topic><topic>EMBO31</topic><topic>Evolution, Molecular</topic><topic>Gene Silencing - physiology</topic><topic>Genetic Complementation Test</topic><topic>heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - physiology</topic><topic>Immunoprecipitation</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nucleosomes - metabolism</topic><topic>Orc1</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Conformation</topic><topic>Saccharomyces cerevisiae</topic><topic>Sequence Alignment</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</topic><topic>Sir3</topic><topic>winged helix-turn-helix</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oppikofer, Mariano</creatorcontrib><creatorcontrib>Kueng, Stephanie</creatorcontrib><creatorcontrib>Keusch, Jeremy J</creatorcontrib><creatorcontrib>Hassler, Markus</creatorcontrib><creatorcontrib>Ladurner, Andreas G</creatorcontrib><creatorcontrib>Gut, Heinz</creatorcontrib><creatorcontrib>Gasser, Susan M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oppikofer, Mariano</au><au>Kueng, Stephanie</au><au>Keusch, Jeremy J</au><au>Hassler, Markus</au><au>Ladurner, Andreas G</au><au>Gut, Heinz</au><au>Gasser, Susan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2013-02-06</date><risdate>2013</risdate><volume>32</volume><issue>3</issue><spage>437</spage><epage>449</epage><pages>437-449</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo . Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in s ir3 Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation. Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>23299941</pmid><doi>10.1038/emboj.2012.343</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2013-02, Vol.32 (3), p.437-449
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567499
source Springer Nature OA Free Journals
subjects Amino Acid Sequence
Amino acids
Chromatin
Chromatin - metabolism
Chromatin Immunoprecipitation
Crystallization
Deoxyribonucleic acid
Dimerization
DNA
DNA Primers - genetics
EMBO09
EMBO31
Evolution, Molecular
Gene Silencing - physiology
Genetic Complementation Test
heterochromatin
Heterochromatin - genetics
Heterochromatin - physiology
Immunoprecipitation
Models, Molecular
Molecular biology
Molecular Sequence Data
Mutagenesis
Nucleosomes - metabolism
Orc1
Polymerase Chain Reaction
Protein Conformation
Saccharomyces cerevisiae
Sequence Alignment
Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry
Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics
Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism
Sir3
winged helix-turn-helix
Yeast
Yeasts
title Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimerization%20of%20Sir3%20via%20its%20C-terminal%20winged%20helix%20domain%20is%20essential%20for%20yeast%20heterochromatin%20formation&rft.jtitle=The%20EMBO%20journal&rft.au=Oppikofer,%20Mariano&rft.date=2013-02-06&rft.volume=32&rft.issue=3&rft.spage=437&rft.epage=449&rft.pages=437-449&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2012.343&rft_dat=%3Cproquest_C6C%3E1315617140%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288712761&rft_id=info:pmid/23299941&rfr_iscdi=true