Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation
Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and t...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2013-02, Vol.32 (3), p.437-449 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | 3 |
container_start_page | 437 |
container_title | The EMBO journal |
container_volume | 32 |
creator | Oppikofer, Mariano Kueng, Stephanie Keusch, Jeremy J Hassler, Markus Ladurner, Andreas G Gut, Heinz Gasser, Susan M |
description | Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes
in vitro
and eliminates silencing at telomeres and
HM
loci
in vivo
. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both
HM
and telomeric repression in s
ir3
Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.
Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail. |
doi_str_mv | 10.1038/emboj.2012.343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315617140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxS3ExMrgyhFZ4sIlnX_Fji9IUEZZNQYSIBAXy3ac1SWJh51uK3_93GWrBhLiZFn-vPd9_j4AnmE0xYhWh64zYTUlCJMpZfQBmGDGUUGQKB-CCSIcFwxXch88TmmFECorgR-BfUKJlJLhCWjf-s5F_1sPPvQwNPCzjxReeA39kOCsGFzsfK9beOn7M1fDpWv9FaxDp30PfYIuJdcPPgNNiHDjdBoyk1XBLmOmhozll-7G_wnYa3Sb3NPb8wB8fXf0Zfa-OPk4P569PilsKQQtSoulrpmQiGvuiK2bpjLCIG6INEZS3ghLqprXTksrDKusJBk3zErd4ArRA_Bq9D1fm87VNieMulXn0Xc6blTQXv350vulOgsXipZcMCmzwctbgxh-rV0aVOeTdW2rexfWSWGKS44FZttZL_5CV2Ed88YyRaq8biI4ztR0pGwMKUXX7MJgpLZFqpsi1bZIlYvMguf3v7DD75rLgBiBS9-6zX_s1NGHN4vtZbQ-HJUpi3Kp8V7if4UpRoVPg7vazdLxp-KCilJ9O52rxZx-4qffF-oHvQZEX8x1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288712761</pqid></control><display><type>article</type><title>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</title><source>Springer Nature OA Free Journals</source><creator>Oppikofer, Mariano ; Kueng, Stephanie ; Keusch, Jeremy J ; Hassler, Markus ; Ladurner, Andreas G ; Gut, Heinz ; Gasser, Susan M</creator><creatorcontrib>Oppikofer, Mariano ; Kueng, Stephanie ; Keusch, Jeremy J ; Hassler, Markus ; Ladurner, Andreas G ; Gut, Heinz ; Gasser, Susan M</creatorcontrib><description>Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes
in vitro
and eliminates silencing at telomeres and
HM
loci
in vivo
. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both
HM
and telomeric repression in s
ir3
Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.
Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2012.343</identifier><identifier>PMID: 23299941</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amino Acid Sequence ; Amino acids ; Chromatin ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Crystallization ; Deoxyribonucleic acid ; Dimerization ; DNA ; DNA Primers - genetics ; EMBO09 ; EMBO31 ; Evolution, Molecular ; Gene Silencing - physiology ; Genetic Complementation Test ; heterochromatin ; Heterochromatin - genetics ; Heterochromatin - physiology ; Immunoprecipitation ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Mutagenesis ; Nucleosomes - metabolism ; Orc1 ; Polymerase Chain Reaction ; Protein Conformation ; Saccharomyces cerevisiae ; Sequence Alignment ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism ; Sir3 ; winged helix-turn-helix ; Yeast ; Yeasts</subject><ispartof>The EMBO journal, 2013-02, Vol.32 (3), p.437-449</ispartof><rights>European Molecular Biology Organization 2013</rights><rights>Copyright © 2013 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Feb 6, 2013</rights><rights>Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</citedby><cites>FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567499/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567499/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/emboj.2012.343$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23299941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oppikofer, Mariano</creatorcontrib><creatorcontrib>Kueng, Stephanie</creatorcontrib><creatorcontrib>Keusch, Jeremy J</creatorcontrib><creatorcontrib>Hassler, Markus</creatorcontrib><creatorcontrib>Ladurner, Andreas G</creatorcontrib><creatorcontrib>Gut, Heinz</creatorcontrib><creatorcontrib>Gasser, Susan M</creatorcontrib><title>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes
in vitro
and eliminates silencing at telomeres and
HM
loci
in vivo
. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both
HM
and telomeric repression in s
ir3
Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.
Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Crystallization</subject><subject>Deoxyribonucleic acid</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA Primers - genetics</subject><subject>EMBO09</subject><subject>EMBO31</subject><subject>Evolution, Molecular</subject><subject>Gene Silencing - physiology</subject><subject>Genetic Complementation Test</subject><subject>heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - physiology</subject><subject>Immunoprecipitation</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nucleosomes - metabolism</subject><subject>Orc1</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Conformation</subject><subject>Saccharomyces cerevisiae</subject><subject>Sequence Alignment</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</subject><subject>Sir3</subject><subject>winged helix-turn-helix</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9v0zAcxS3ExMrgyhFZ4sIlnX_Fji9IUEZZNQYSIBAXy3ac1SWJh51uK3_93GWrBhLiZFn-vPd9_j4AnmE0xYhWh64zYTUlCJMpZfQBmGDGUUGQKB-CCSIcFwxXch88TmmFECorgR-BfUKJlJLhCWjf-s5F_1sPPvQwNPCzjxReeA39kOCsGFzsfK9beOn7M1fDpWv9FaxDp30PfYIuJdcPPgNNiHDjdBoyk1XBLmOmhozll-7G_wnYa3Sb3NPb8wB8fXf0Zfa-OPk4P569PilsKQQtSoulrpmQiGvuiK2bpjLCIG6INEZS3ghLqprXTksrDKusJBk3zErd4ArRA_Bq9D1fm87VNieMulXn0Xc6blTQXv350vulOgsXipZcMCmzwctbgxh-rV0aVOeTdW2rexfWSWGKS44FZttZL_5CV2Ed88YyRaq8biI4ztR0pGwMKUXX7MJgpLZFqpsi1bZIlYvMguf3v7DD75rLgBiBS9-6zX_s1NGHN4vtZbQ-HJUpi3Kp8V7if4UpRoVPg7vazdLxp-KCilJ9O52rxZx-4qffF-oHvQZEX8x1</recordid><startdate>20130206</startdate><enddate>20130206</enddate><creator>Oppikofer, Mariano</creator><creator>Kueng, Stephanie</creator><creator>Keusch, Jeremy J</creator><creator>Hassler, Markus</creator><creator>Ladurner, Andreas G</creator><creator>Gut, Heinz</creator><creator>Gasser, Susan M</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130206</creationdate><title>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</title><author>Oppikofer, Mariano ; Kueng, Stephanie ; Keusch, Jeremy J ; Hassler, Markus ; Ladurner, Andreas G ; Gut, Heinz ; Gasser, Susan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5773-5c19ad47906a6e2cdff8b7b06b29bb936f7c28d6dea9c7b48c92d47b4c9af1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Crystallization</topic><topic>Deoxyribonucleic acid</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA Primers - genetics</topic><topic>EMBO09</topic><topic>EMBO31</topic><topic>Evolution, Molecular</topic><topic>Gene Silencing - physiology</topic><topic>Genetic Complementation Test</topic><topic>heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - physiology</topic><topic>Immunoprecipitation</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nucleosomes - metabolism</topic><topic>Orc1</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Conformation</topic><topic>Saccharomyces cerevisiae</topic><topic>Sequence Alignment</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</topic><topic>Sir3</topic><topic>winged helix-turn-helix</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oppikofer, Mariano</creatorcontrib><creatorcontrib>Kueng, Stephanie</creatorcontrib><creatorcontrib>Keusch, Jeremy J</creatorcontrib><creatorcontrib>Hassler, Markus</creatorcontrib><creatorcontrib>Ladurner, Andreas G</creatorcontrib><creatorcontrib>Gut, Heinz</creatorcontrib><creatorcontrib>Gasser, Susan M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oppikofer, Mariano</au><au>Kueng, Stephanie</au><au>Keusch, Jeremy J</au><au>Hassler, Markus</au><au>Ladurner, Andreas G</au><au>Gut, Heinz</au><au>Gasser, Susan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2013-02-06</date><risdate>2013</risdate><volume>32</volume><issue>3</issue><spage>437</spage><epage>449</epage><pages>437-449</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes
in vitro
and eliminates silencing at telomeres and
HM
loci
in vivo
. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both
HM
and telomeric repression in s
ir3
Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.
Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>23299941</pmid><doi>10.1038/emboj.2012.343</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2013-02, Vol.32 (3), p.437-449 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3567499 |
source | Springer Nature OA Free Journals |
subjects | Amino Acid Sequence Amino acids Chromatin Chromatin - metabolism Chromatin Immunoprecipitation Crystallization Deoxyribonucleic acid Dimerization DNA DNA Primers - genetics EMBO09 EMBO31 Evolution, Molecular Gene Silencing - physiology Genetic Complementation Test heterochromatin Heterochromatin - genetics Heterochromatin - physiology Immunoprecipitation Models, Molecular Molecular biology Molecular Sequence Data Mutagenesis Nucleosomes - metabolism Orc1 Polymerase Chain Reaction Protein Conformation Saccharomyces cerevisiae Sequence Alignment Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism Sir3 winged helix-turn-helix Yeast Yeasts |
title | Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimerization%20of%20Sir3%20via%20its%20C-terminal%20winged%20helix%20domain%20is%20essential%20for%20yeast%20heterochromatin%20formation&rft.jtitle=The%20EMBO%20journal&rft.au=Oppikofer,%20Mariano&rft.date=2013-02-06&rft.volume=32&rft.issue=3&rft.spage=437&rft.epage=449&rft.pages=437-449&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2012.343&rft_dat=%3Cproquest_C6C%3E1315617140%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288712761&rft_id=info:pmid/23299941&rfr_iscdi=true |