Multifunctional nanobeacon for imaging Thomsen‐Friedenreich antigen‐associated colorectal cancer

This research aimed to validate the specificity of the newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen, a potential biomarker of colorectal cancer. The imaging agent is comprised of a submicron‐sized polystyrene nanosphere encapsulated with a Coumarin 6 dye. The surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2013-05, Vol.132 (9), p.2107-2117
Hauptverfasser: Kumagai, Hironori, Pham, Wellington, Kataoka, Makoto, Hiwatari, Ken‐Ichiro, McBride, James, Wilson, Kevin J., Tachikawa, Hiroyuki, Kimura, Ryoji, Nakamura, Kunio, Liu, Eric H., Gore, John C., Sakuma, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2117
container_issue 9
container_start_page 2107
container_title International journal of cancer
container_volume 132
creator Kumagai, Hironori
Pham, Wellington
Kataoka, Makoto
Hiwatari, Ken‐Ichiro
McBride, James
Wilson, Kevin J.
Tachikawa, Hiroyuki
Kimura, Ryoji
Nakamura, Kunio
Liu, Eric H.
Gore, John C.
Sakuma, Shinji
description This research aimed to validate the specificity of the newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen, a potential biomarker of colorectal cancer. The imaging agent is comprised of a submicron‐sized polystyrene nanosphere encapsulated with a Coumarin 6 dye. The surface of the nanosphere was modified with peanut agglutinin (PNA) and poly(N‐vinylacetamide (PNVA) moieties. The former binds to Gal‐β(1‐3)GalNAc with high affinity while the latter enhances the specificity of PNA for the carbohydrates. The specificity of the nanobeacon was evaluated in human colorectal cancer cells and specimens, and the data were compared with immunohistochemical staining and flow cytometric analysis. Additionally, distribution of the nanobeacon in vivo was assessed using an “intestinal loop” mouse model. Quantitative analysis of the data indicated that approximately 2 μg of PNA were detected for each milligram of the nanobeacon. The nanobeacon specifically reported colorectal tumors by recognizing the tumor‐specific antigen through the surface‐immobilized PNA. Removal of TF from human colorectal cancer cells and tissues resulted in a loss of fluorescence signal, which suggests the specificity of the probe. Most importantly, the probe was not absorbed systematically in the large intestine upon topical application. As a result, no registered toxicity was associated with the probe. These data demonstrate the potential use of this novel nanobeacon for imaging the TF antigen as a biomarker for the early detection and prediction of the progression of colorectal cancer at the molecular level. What's new? Approximately half of the Western population will develop some form of colorectal tumor by age 70. Here the authors set to validate the potential suitability of a newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen as a biomarker of colorectal cancer. They demonstrated that the probe specifically recognizes TF antigen‐specific tumors in human tissues. When applied topically, the probe is also not absorbed by the mouse intestine, obviating systemic distribution‐associated toxicity. The nanobeacon offers potential for colorectal cancer imaging via colonoscopy both for the early detection and prediction of the progression of colorectal cancer at the molecular level.
doi_str_mv 10.1002/ijc.27903
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074010541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5393-d4a96c4ffc2c454f77b24410ccccf5236d96a7ac8c124efd80b49020802fa2543</originalsourceid><addsrcrecordid>eNp1kU1OHDEQha0oKEwICy4QtRRlkUWDf9vTGyQ0CgmIKBtYWzXV9oxHPTaxu0HscoScMSeJYYa_RbyxVPXpvap6hBwwesgo5Ud-hYdct1S8IRNGW11TztRbMik9Wmsmml3yPucVpYwpKt-RXS6oUqU-Id2PsR-8GwMOPgboqwAhzi1gDJWLqfJrWPiwqC6XcZ1t-Pv7z2nytrMhWY_LCsLgFw9lyDmih8F2FcY-JotDUUMIaNMHsuOgz3Z_---Rq9Ovl7Pv9cXPb2ezk4salWhF3UloG5TOIUeppNN6zqVkFMtzioumaxvQgFNkXFrXTelctmXFKeUOuJJijxxvdK_H-dp2aMOQoDfXqWyR7kwEb153gl-aRbwxQjWN4LoIfNoKpPhrtHkwqzimcpZsmBSCccU5L9SXDYUp5pyse3Jg1NwHYkog5iGQwn58OdIT-ZhAAT5vAcgIvUvlYj4_c5ppJtt7oaMNd-t7e_d_R3N2PttY_wOJo6Y5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433125222</pqid></control><display><type>article</type><title>Multifunctional nanobeacon for imaging Thomsen‐Friedenreich antigen‐associated colorectal cancer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumagai, Hironori ; Pham, Wellington ; Kataoka, Makoto ; Hiwatari, Ken‐Ichiro ; McBride, James ; Wilson, Kevin J. ; Tachikawa, Hiroyuki ; Kimura, Ryoji ; Nakamura, Kunio ; Liu, Eric H. ; Gore, John C. ; Sakuma, Shinji</creator><creatorcontrib>Kumagai, Hironori ; Pham, Wellington ; Kataoka, Makoto ; Hiwatari, Ken‐Ichiro ; McBride, James ; Wilson, Kevin J. ; Tachikawa, Hiroyuki ; Kimura, Ryoji ; Nakamura, Kunio ; Liu, Eric H. ; Gore, John C. ; Sakuma, Shinji</creatorcontrib><description>This research aimed to validate the specificity of the newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen, a potential biomarker of colorectal cancer. The imaging agent is comprised of a submicron‐sized polystyrene nanosphere encapsulated with a Coumarin 6 dye. The surface of the nanosphere was modified with peanut agglutinin (PNA) and poly(N‐vinylacetamide (PNVA) moieties. The former binds to Gal‐β(1‐3)GalNAc with high affinity while the latter enhances the specificity of PNA for the carbohydrates. The specificity of the nanobeacon was evaluated in human colorectal cancer cells and specimens, and the data were compared with immunohistochemical staining and flow cytometric analysis. Additionally, distribution of the nanobeacon in vivo was assessed using an “intestinal loop” mouse model. Quantitative analysis of the data indicated that approximately 2 μg of PNA were detected for each milligram of the nanobeacon. The nanobeacon specifically reported colorectal tumors by recognizing the tumor‐specific antigen through the surface‐immobilized PNA. Removal of TF from human colorectal cancer cells and tissues resulted in a loss of fluorescence signal, which suggests the specificity of the probe. Most importantly, the probe was not absorbed systematically in the large intestine upon topical application. As a result, no registered toxicity was associated with the probe. These data demonstrate the potential use of this novel nanobeacon for imaging the TF antigen as a biomarker for the early detection and prediction of the progression of colorectal cancer at the molecular level. What's new? Approximately half of the Western population will develop some form of colorectal tumor by age 70. Here the authors set to validate the potential suitability of a newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen as a biomarker of colorectal cancer. They demonstrated that the probe specifically recognizes TF antigen‐specific tumors in human tissues. When applied topically, the probe is also not absorbed by the mouse intestine, obviating systemic distribution‐associated toxicity. The nanobeacon offers potential for colorectal cancer imaging via colonoscopy both for the early detection and prediction of the progression of colorectal cancer at the molecular level.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.27903</identifier><identifier>PMID: 23055136</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>agglutinin ; Animals ; Antigens ; Antigens, Tumor-Associated, Carbohydrate - genetics ; Antigens, Tumor-Associated, Carbohydrate - metabolism ; Biological and medical sciences ; Biomarkers ; Blotting, Western ; Cancer ; Case-Control Studies ; Colon - metabolism ; Colorectal cancer ; Colorectal Neoplasms - diagnosis ; Colorectal Neoplasms - metabolism ; Coumarins - pharmacokinetics ; diagnosis ; Diagnostic Imaging - methods ; Fluorescent Dyes ; Gastroenterology. Liver. Pancreas. Abdomen ; Humans ; Immunoenzyme Techniques ; Male ; Medical research ; Medical sciences ; Mice ; Mice, Transgenic ; molecular imaging ; Nanospheres ; nanotechnology ; optical imaging ; Peanut Agglutinin - pharmacokinetics ; polymer ; Polystyrenes - chemistry ; Real-Time Polymerase Chain Reaction ; Rectum - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; Stomach. Duodenum. Small intestine. Colon. Rectum. Anus ; Surface Properties ; targeted imaging ; Thiazoles - pharmacokinetics ; Thomsen‐Friedenreich antigen ; Tissue Distribution ; Tumor Cells, Cultured ; Tumors</subject><ispartof>International journal of cancer, 2013-05, Vol.132 (9), p.2107-2117</ispartof><rights>Copyright © 2012 UICC</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 UICC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5393-d4a96c4ffc2c454f77b24410ccccf5236d96a7ac8c124efd80b49020802fa2543</citedby><cites>FETCH-LOGICAL-c5393-d4a96c4ffc2c454f77b24410ccccf5236d96a7ac8c124efd80b49020802fa2543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.27903$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.27903$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27171493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23055136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumagai, Hironori</creatorcontrib><creatorcontrib>Pham, Wellington</creatorcontrib><creatorcontrib>Kataoka, Makoto</creatorcontrib><creatorcontrib>Hiwatari, Ken‐Ichiro</creatorcontrib><creatorcontrib>McBride, James</creatorcontrib><creatorcontrib>Wilson, Kevin J.</creatorcontrib><creatorcontrib>Tachikawa, Hiroyuki</creatorcontrib><creatorcontrib>Kimura, Ryoji</creatorcontrib><creatorcontrib>Nakamura, Kunio</creatorcontrib><creatorcontrib>Liu, Eric H.</creatorcontrib><creatorcontrib>Gore, John C.</creatorcontrib><creatorcontrib>Sakuma, Shinji</creatorcontrib><title>Multifunctional nanobeacon for imaging Thomsen‐Friedenreich antigen‐associated colorectal cancer</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>This research aimed to validate the specificity of the newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen, a potential biomarker of colorectal cancer. The imaging agent is comprised of a submicron‐sized polystyrene nanosphere encapsulated with a Coumarin 6 dye. The surface of the nanosphere was modified with peanut agglutinin (PNA) and poly(N‐vinylacetamide (PNVA) moieties. The former binds to Gal‐β(1‐3)GalNAc with high affinity while the latter enhances the specificity of PNA for the carbohydrates. The specificity of the nanobeacon was evaluated in human colorectal cancer cells and specimens, and the data were compared with immunohistochemical staining and flow cytometric analysis. Additionally, distribution of the nanobeacon in vivo was assessed using an “intestinal loop” mouse model. Quantitative analysis of the data indicated that approximately 2 μg of PNA were detected for each milligram of the nanobeacon. The nanobeacon specifically reported colorectal tumors by recognizing the tumor‐specific antigen through the surface‐immobilized PNA. Removal of TF from human colorectal cancer cells and tissues resulted in a loss of fluorescence signal, which suggests the specificity of the probe. Most importantly, the probe was not absorbed systematically in the large intestine upon topical application. As a result, no registered toxicity was associated with the probe. These data demonstrate the potential use of this novel nanobeacon for imaging the TF antigen as a biomarker for the early detection and prediction of the progression of colorectal cancer at the molecular level. What's new? Approximately half of the Western population will develop some form of colorectal tumor by age 70. Here the authors set to validate the potential suitability of a newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen as a biomarker of colorectal cancer. They demonstrated that the probe specifically recognizes TF antigen‐specific tumors in human tissues. When applied topically, the probe is also not absorbed by the mouse intestine, obviating systemic distribution‐associated toxicity. The nanobeacon offers potential for colorectal cancer imaging via colonoscopy both for the early detection and prediction of the progression of colorectal cancer at the molecular level.</description><subject>agglutinin</subject><subject>Animals</subject><subject>Antigens</subject><subject>Antigens, Tumor-Associated, Carbohydrate - genetics</subject><subject>Antigens, Tumor-Associated, Carbohydrate - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomarkers</subject><subject>Blotting, Western</subject><subject>Cancer</subject><subject>Case-Control Studies</subject><subject>Colon - metabolism</subject><subject>Colorectal cancer</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Coumarins - pharmacokinetics</subject><subject>diagnosis</subject><subject>Diagnostic Imaging - methods</subject><subject>Fluorescent Dyes</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Humans</subject><subject>Immunoenzyme Techniques</subject><subject>Male</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>molecular imaging</subject><subject>Nanospheres</subject><subject>nanotechnology</subject><subject>optical imaging</subject><subject>Peanut Agglutinin - pharmacokinetics</subject><subject>polymer</subject><subject>Polystyrenes - chemistry</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Rectum - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>Stomach. Duodenum. Small intestine. Colon. Rectum. Anus</subject><subject>Surface Properties</subject><subject>targeted imaging</subject><subject>Thiazoles - pharmacokinetics</subject><subject>Thomsen‐Friedenreich antigen</subject><subject>Tissue Distribution</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1OHDEQha0oKEwICy4QtRRlkUWDf9vTGyQ0CgmIKBtYWzXV9oxHPTaxu0HscoScMSeJYYa_RbyxVPXpvap6hBwwesgo5Ud-hYdct1S8IRNGW11TztRbMik9Wmsmml3yPucVpYwpKt-RXS6oUqU-Id2PsR-8GwMOPgboqwAhzi1gDJWLqfJrWPiwqC6XcZ1t-Pv7z2nytrMhWY_LCsLgFw9lyDmih8F2FcY-JotDUUMIaNMHsuOgz3Z_---Rq9Ovl7Pv9cXPb2ezk4salWhF3UloG5TOIUeppNN6zqVkFMtzioumaxvQgFNkXFrXTelctmXFKeUOuJJijxxvdK_H-dp2aMOQoDfXqWyR7kwEb153gl-aRbwxQjWN4LoIfNoKpPhrtHkwqzimcpZsmBSCccU5L9SXDYUp5pyse3Jg1NwHYkog5iGQwn58OdIT-ZhAAT5vAcgIvUvlYj4_c5ppJtt7oaMNd-t7e_d_R3N2PttY_wOJo6Y5</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Kumagai, Hironori</creator><creator>Pham, Wellington</creator><creator>Kataoka, Makoto</creator><creator>Hiwatari, Ken‐Ichiro</creator><creator>McBride, James</creator><creator>Wilson, Kevin J.</creator><creator>Tachikawa, Hiroyuki</creator><creator>Kimura, Ryoji</creator><creator>Nakamura, Kunio</creator><creator>Liu, Eric H.</creator><creator>Gore, John C.</creator><creator>Sakuma, Shinji</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Multifunctional nanobeacon for imaging Thomsen‐Friedenreich antigen‐associated colorectal cancer</title><author>Kumagai, Hironori ; Pham, Wellington ; Kataoka, Makoto ; Hiwatari, Ken‐Ichiro ; McBride, James ; Wilson, Kevin J. ; Tachikawa, Hiroyuki ; Kimura, Ryoji ; Nakamura, Kunio ; Liu, Eric H. ; Gore, John C. ; Sakuma, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5393-d4a96c4ffc2c454f77b24410ccccf5236d96a7ac8c124efd80b49020802fa2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>agglutinin</topic><topic>Animals</topic><topic>Antigens</topic><topic>Antigens, Tumor-Associated, Carbohydrate - genetics</topic><topic>Antigens, Tumor-Associated, Carbohydrate - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomarkers</topic><topic>Blotting, Western</topic><topic>Cancer</topic><topic>Case-Control Studies</topic><topic>Colon - metabolism</topic><topic>Colorectal cancer</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Coumarins - pharmacokinetics</topic><topic>diagnosis</topic><topic>Diagnostic Imaging - methods</topic><topic>Fluorescent Dyes</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Humans</topic><topic>Immunoenzyme Techniques</topic><topic>Male</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>molecular imaging</topic><topic>Nanospheres</topic><topic>nanotechnology</topic><topic>optical imaging</topic><topic>Peanut Agglutinin - pharmacokinetics</topic><topic>polymer</topic><topic>Polystyrenes - chemistry</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Rectum - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>Stomach. Duodenum. Small intestine. Colon. Rectum. Anus</topic><topic>Surface Properties</topic><topic>targeted imaging</topic><topic>Thiazoles - pharmacokinetics</topic><topic>Thomsen‐Friedenreich antigen</topic><topic>Tissue Distribution</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumagai, Hironori</creatorcontrib><creatorcontrib>Pham, Wellington</creatorcontrib><creatorcontrib>Kataoka, Makoto</creatorcontrib><creatorcontrib>Hiwatari, Ken‐Ichiro</creatorcontrib><creatorcontrib>McBride, James</creatorcontrib><creatorcontrib>Wilson, Kevin J.</creatorcontrib><creatorcontrib>Tachikawa, Hiroyuki</creatorcontrib><creatorcontrib>Kimura, Ryoji</creatorcontrib><creatorcontrib>Nakamura, Kunio</creatorcontrib><creatorcontrib>Liu, Eric H.</creatorcontrib><creatorcontrib>Gore, John C.</creatorcontrib><creatorcontrib>Sakuma, Shinji</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumagai, Hironori</au><au>Pham, Wellington</au><au>Kataoka, Makoto</au><au>Hiwatari, Ken‐Ichiro</au><au>McBride, James</au><au>Wilson, Kevin J.</au><au>Tachikawa, Hiroyuki</au><au>Kimura, Ryoji</au><au>Nakamura, Kunio</au><au>Liu, Eric H.</au><au>Gore, John C.</au><au>Sakuma, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional nanobeacon for imaging Thomsen‐Friedenreich antigen‐associated colorectal cancer</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>132</volume><issue>9</issue><spage>2107</spage><epage>2117</epage><pages>2107-2117</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>This research aimed to validate the specificity of the newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen, a potential biomarker of colorectal cancer. The imaging agent is comprised of a submicron‐sized polystyrene nanosphere encapsulated with a Coumarin 6 dye. The surface of the nanosphere was modified with peanut agglutinin (PNA) and poly(N‐vinylacetamide (PNVA) moieties. The former binds to Gal‐β(1‐3)GalNAc with high affinity while the latter enhances the specificity of PNA for the carbohydrates. The specificity of the nanobeacon was evaluated in human colorectal cancer cells and specimens, and the data were compared with immunohistochemical staining and flow cytometric analysis. Additionally, distribution of the nanobeacon in vivo was assessed using an “intestinal loop” mouse model. Quantitative analysis of the data indicated that approximately 2 μg of PNA were detected for each milligram of the nanobeacon. The nanobeacon specifically reported colorectal tumors by recognizing the tumor‐specific antigen through the surface‐immobilized PNA. Removal of TF from human colorectal cancer cells and tissues resulted in a loss of fluorescence signal, which suggests the specificity of the probe. Most importantly, the probe was not absorbed systematically in the large intestine upon topical application. As a result, no registered toxicity was associated with the probe. These data demonstrate the potential use of this novel nanobeacon for imaging the TF antigen as a biomarker for the early detection and prediction of the progression of colorectal cancer at the molecular level. What's new? Approximately half of the Western population will develop some form of colorectal tumor by age 70. Here the authors set to validate the potential suitability of a newly developed nanobeacon for imaging the Thomsen‐Friedenreich (TF) antigen as a biomarker of colorectal cancer. They demonstrated that the probe specifically recognizes TF antigen‐specific tumors in human tissues. When applied topically, the probe is also not absorbed by the mouse intestine, obviating systemic distribution‐associated toxicity. The nanobeacon offers potential for colorectal cancer imaging via colonoscopy both for the early detection and prediction of the progression of colorectal cancer at the molecular level.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23055136</pmid><doi>10.1002/ijc.27903</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2013-05, Vol.132 (9), p.2107-2117
issn 0020-7136
1097-0215
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566327
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals
subjects agglutinin
Animals
Antigens
Antigens, Tumor-Associated, Carbohydrate - genetics
Antigens, Tumor-Associated, Carbohydrate - metabolism
Biological and medical sciences
Biomarkers
Blotting, Western
Cancer
Case-Control Studies
Colon - metabolism
Colorectal cancer
Colorectal Neoplasms - diagnosis
Colorectal Neoplasms - metabolism
Coumarins - pharmacokinetics
diagnosis
Diagnostic Imaging - methods
Fluorescent Dyes
Gastroenterology. Liver. Pancreas. Abdomen
Humans
Immunoenzyme Techniques
Male
Medical research
Medical sciences
Mice
Mice, Transgenic
molecular imaging
Nanospheres
nanotechnology
optical imaging
Peanut Agglutinin - pharmacokinetics
polymer
Polystyrenes - chemistry
Real-Time Polymerase Chain Reaction
Rectum - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Stomach. Duodenum. Small intestine. Colon. Rectum. Anus
Surface Properties
targeted imaging
Thiazoles - pharmacokinetics
Thomsen‐Friedenreich antigen
Tissue Distribution
Tumor Cells, Cultured
Tumors
title Multifunctional nanobeacon for imaging Thomsen‐Friedenreich antigen‐associated colorectal cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20nanobeacon%20for%20imaging%20Thomsen%E2%80%90Friedenreich%20antigen%E2%80%90associated%20colorectal%20cancer&rft.jtitle=International%20journal%20of%20cancer&rft.au=Kumagai,%20Hironori&rft.date=2013-05-01&rft.volume=132&rft.issue=9&rft.spage=2107&rft.epage=2117&rft.pages=2107-2117&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.27903&rft_dat=%3Cproquest_pubme%3E3074010541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433125222&rft_id=info:pmid/23055136&rfr_iscdi=true