Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore
Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that ov...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2013-02, Vol.405 (6), p.2065-2075 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2075 |
---|---|
container_issue | 6 |
container_start_page | 2065 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 405 |
creator | Rich, Ryan M. Stankowska, Dorota L. Maliwal, Badri P. Sørensen, Thomas Just Laursen, Bo W. Krishnamoorthy, Raghu R. Gryczynski, Zygmunt Borejdo, Julian Gryczynski, Ignacy Fudala, Rafal |
description | Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background. |
doi_str_mv | 10.1007/s00216-012-6623-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337815736</galeid><sourcerecordid>A337815736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-853d13045c0f509e2c4af0e1618d4b5d77e6396ec278644d5bc8b30126b2eed63</originalsourceid><addsrcrecordid>eNqFUk1v1DAUjBCIloUfwAVZ4lIOKf5O9oIUtaUgVdrLcrYc5yXrktiLnVSUv8KfxSHtqkVClQ-2_ObNezOaLHtL8CnBuPgYMaZE5pjQXErKcvIsOyaSlDmVAj8_vDk9yl7FeI0xESWRL7MjyqjgXBTH2e-L3g7W6dF6h3yL9DT6tp98gGjAGUC1Nt-74CfXoDb4AT0qjjbGCZAddAcR1bdoijCzjHaAvNMjNKiBEcxfdp0oxh2g6pc-t5ufehts5bqpB2enAZ1U55tt9WHh9_tdGvI6e9HqPsKbu3uVfft8sT37kl9tLr-eVVe5kUU55qVgDWGYC4NbgddADdcthll8w2vRFAVItpZgaFFKzhtRm7JmyTRZU4BGslX2aeHdT_UATZI2Bt2rfUi6wq3y2qrHFWd3qvM3iolkezJ-lZ3cEQT_Y4I4qsEmh_peO_BTVERKjHmaXj4N5WxdcE64fBpKS4FLwphI0Pf_QK_9FFwyLc0uMJWYl_Oapwuq0z0o61qf1Jh0Ghis8Q5am_4rxoqSiILNG5ClwQQfY4D24AnBak6gWhKokplqTqAiqefdQzMPHfeRSwC6AGIquQ7Cg13_y_oH1Pvnrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670260482</pqid></control><display><type>article</type><title>Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rich, Ryan M. ; Stankowska, Dorota L. ; Maliwal, Badri P. ; Sørensen, Thomas Just ; Laursen, Bo W. ; Krishnamoorthy, Raghu R. ; Gryczynski, Zygmunt ; Borejdo, Julian ; Gryczynski, Ignacy ; Fudala, Rafal</creator><creatorcontrib>Rich, Ryan M. ; Stankowska, Dorota L. ; Maliwal, Badri P. ; Sørensen, Thomas Just ; Laursen, Bo W. ; Krishnamoorthy, Raghu R. ; Gryczynski, Zygmunt ; Borejdo, Julian ; Gryczynski, Ignacy ; Fudala, Rafal</creatorcontrib><description>Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-012-6623-1</identifier><identifier>PMID: 23254457</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Animals ; Biochemistry ; Biological samples ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Dyes ; Dyes and dyeing ; Emission ; Emissions ; Fluorescence ; Fluorescent Dyes - analysis ; Fluorescent Dyes - chemical synthesis ; Food Science ; Health aspects ; Heterocyclic Compounds, 4 or More Rings - analysis ; Heterocyclic Compounds, 4 or More Rings - chemical synthesis ; Image detection ; Imaging ; Laboratory Medicine ; Lasers ; Lifetime ; Methods ; Microscopy, Fluorescence ; Microtomy ; Molecular biology ; Molecular Imaging - methods ; Monitoring/Environmental Analysis ; Nanocomposites ; Nanomaterials ; Nanostructure ; Numerical analysis ; Optic Nerve - ultrastructure ; Original Paper ; Photons ; Rats ; Retina - ultrastructure ; Signal-To-Noise Ratio ; Spectrometry, Fluorescence - methods ; Spectrum analysis ; Time Factors</subject><ispartof>Analytical and bioanalytical chemistry, 2013-02, Vol.405 (6), p.2065-2075</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2012 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-853d13045c0f509e2c4af0e1618d4b5d77e6396ec278644d5bc8b30126b2eed63</citedby><cites>FETCH-LOGICAL-c678t-853d13045c0f509e2c4af0e1618d4b5d77e6396ec278644d5bc8b30126b2eed63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-012-6623-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-012-6623-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23254457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rich, Ryan M.</creatorcontrib><creatorcontrib>Stankowska, Dorota L.</creatorcontrib><creatorcontrib>Maliwal, Badri P.</creatorcontrib><creatorcontrib>Sørensen, Thomas Just</creatorcontrib><creatorcontrib>Laursen, Bo W.</creatorcontrib><creatorcontrib>Krishnamoorthy, Raghu R.</creatorcontrib><creatorcontrib>Gryczynski, Zygmunt</creatorcontrib><creatorcontrib>Borejdo, Julian</creatorcontrib><creatorcontrib>Gryczynski, Ignacy</creatorcontrib><creatorcontrib>Fudala, Rafal</creatorcontrib><title>Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.</description><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological samples</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dyes</subject><subject>Dyes and dyeing</subject><subject>Emission</subject><subject>Emissions</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - analysis</subject><subject>Fluorescent Dyes - chemical synthesis</subject><subject>Food Science</subject><subject>Health aspects</subject><subject>Heterocyclic Compounds, 4 or More Rings - analysis</subject><subject>Heterocyclic Compounds, 4 or More Rings - chemical synthesis</subject><subject>Image detection</subject><subject>Imaging</subject><subject>Laboratory Medicine</subject><subject>Lasers</subject><subject>Lifetime</subject><subject>Methods</subject><subject>Microscopy, Fluorescence</subject><subject>Microtomy</subject><subject>Molecular biology</subject><subject>Molecular Imaging - methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Numerical analysis</subject><subject>Optic Nerve - ultrastructure</subject><subject>Original Paper</subject><subject>Photons</subject><subject>Rats</subject><subject>Retina - ultrastructure</subject><subject>Signal-To-Noise Ratio</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Spectrum analysis</subject><subject>Time Factors</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUk1v1DAUjBCIloUfwAVZ4lIOKf5O9oIUtaUgVdrLcrYc5yXrktiLnVSUv8KfxSHtqkVClQ-2_ObNezOaLHtL8CnBuPgYMaZE5pjQXErKcvIsOyaSlDmVAj8_vDk9yl7FeI0xESWRL7MjyqjgXBTH2e-L3g7W6dF6h3yL9DT6tp98gGjAGUC1Nt-74CfXoDb4AT0qjjbGCZAddAcR1bdoijCzjHaAvNMjNKiBEcxfdp0oxh2g6pc-t5ufehts5bqpB2enAZ1U55tt9WHh9_tdGvI6e9HqPsKbu3uVfft8sT37kl9tLr-eVVe5kUU55qVgDWGYC4NbgddADdcthll8w2vRFAVItpZgaFFKzhtRm7JmyTRZU4BGslX2aeHdT_UATZI2Bt2rfUi6wq3y2qrHFWd3qvM3iolkezJ-lZ3cEQT_Y4I4qsEmh_peO_BTVERKjHmaXj4N5WxdcE64fBpKS4FLwphI0Pf_QK_9FFwyLc0uMJWYl_Oapwuq0z0o61qf1Jh0Ghis8Q5am_4rxoqSiILNG5ClwQQfY4D24AnBak6gWhKokplqTqAiqefdQzMPHfeRSwC6AGIquQ7Cg13_y_oH1Pvnrw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Rich, Ryan M.</creator><creator>Stankowska, Dorota L.</creator><creator>Maliwal, Badri P.</creator><creator>Sørensen, Thomas Just</creator><creator>Laursen, Bo W.</creator><creator>Krishnamoorthy, Raghu R.</creator><creator>Gryczynski, Zygmunt</creator><creator>Borejdo, Julian</creator><creator>Gryczynski, Ignacy</creator><creator>Fudala, Rafal</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore</title><author>Rich, Ryan M. ; Stankowska, Dorota L. ; Maliwal, Badri P. ; Sørensen, Thomas Just ; Laursen, Bo W. ; Krishnamoorthy, Raghu R. ; Gryczynski, Zygmunt ; Borejdo, Julian ; Gryczynski, Ignacy ; Fudala, Rafal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-853d13045c0f509e2c4af0e1618d4b5d77e6396ec278644d5bc8b30126b2eed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological samples</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dyes</topic><topic>Dyes and dyeing</topic><topic>Emission</topic><topic>Emissions</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - analysis</topic><topic>Fluorescent Dyes - chemical synthesis</topic><topic>Food Science</topic><topic>Health aspects</topic><topic>Heterocyclic Compounds, 4 or More Rings - analysis</topic><topic>Heterocyclic Compounds, 4 or More Rings - chemical synthesis</topic><topic>Image detection</topic><topic>Imaging</topic><topic>Laboratory Medicine</topic><topic>Lasers</topic><topic>Lifetime</topic><topic>Methods</topic><topic>Microscopy, Fluorescence</topic><topic>Microtomy</topic><topic>Molecular biology</topic><topic>Molecular Imaging - methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Numerical analysis</topic><topic>Optic Nerve - ultrastructure</topic><topic>Original Paper</topic><topic>Photons</topic><topic>Rats</topic><topic>Retina - ultrastructure</topic><topic>Signal-To-Noise Ratio</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Spectrum analysis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rich, Ryan M.</creatorcontrib><creatorcontrib>Stankowska, Dorota L.</creatorcontrib><creatorcontrib>Maliwal, Badri P.</creatorcontrib><creatorcontrib>Sørensen, Thomas Just</creatorcontrib><creatorcontrib>Laursen, Bo W.</creatorcontrib><creatorcontrib>Krishnamoorthy, Raghu R.</creatorcontrib><creatorcontrib>Gryczynski, Zygmunt</creatorcontrib><creatorcontrib>Borejdo, Julian</creatorcontrib><creatorcontrib>Gryczynski, Ignacy</creatorcontrib><creatorcontrib>Fudala, Rafal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rich, Ryan M.</au><au>Stankowska, Dorota L.</au><au>Maliwal, Badri P.</au><au>Sørensen, Thomas Just</au><au>Laursen, Bo W.</au><au>Krishnamoorthy, Raghu R.</au><au>Gryczynski, Zygmunt</au><au>Borejdo, Julian</au><au>Gryczynski, Ignacy</au><au>Fudala, Rafal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>405</volume><issue>6</issue><spage>2065</spage><epage>2075</epage><pages>2065-2075</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23254457</pmid><doi>10.1007/s00216-012-6623-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2013-02, Vol.405 (6), p.2065-2075 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3566262 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Animals Biochemistry Biological samples Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Dyes Dyes and dyeing Emission Emissions Fluorescence Fluorescent Dyes - analysis Fluorescent Dyes - chemical synthesis Food Science Health aspects Heterocyclic Compounds, 4 or More Rings - analysis Heterocyclic Compounds, 4 or More Rings - chemical synthesis Image detection Imaging Laboratory Medicine Lasers Lifetime Methods Microscopy, Fluorescence Microtomy Molecular biology Molecular Imaging - methods Monitoring/Environmental Analysis Nanocomposites Nanomaterials Nanostructure Numerical analysis Optic Nerve - ultrastructure Original Paper Photons Rats Retina - ultrastructure Signal-To-Noise Ratio Spectrometry, Fluorescence - methods Spectrum analysis Time Factors |
title | Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elimination%20of%20autofluorescence%20background%20from%20fluorescence%20tissue%20images%20by%20use%20of%20time-gated%20detection%20and%20the%20AzaDiOxaTriAngulenium%20(ADOTA)%20fluorophore&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Rich,%20Ryan%20M.&rft.date=2013-02-01&rft.volume=405&rft.issue=6&rft.spage=2065&rft.epage=2075&rft.pages=2065-2075&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-012-6623-1&rft_dat=%3Cgale_pubme%3EA337815736%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670260482&rft_id=info:pmid/23254457&rft_galeid=A337815736&rfr_iscdi=true |