Neuronal basis of sequential foraging decisions in a patchy environment

The authors record from primate dorsal anterior cingulate cortex (dACC) during a foraging task. They find that dACC neuronal responses were correlated with behavioral decisions about when to leave a depleting resource to exploit another. Deciding when to leave a depleting resource to exploit another...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2011-07, Vol.14 (7), p.933-939
Hauptverfasser: Hayden, Benjamin Y, Pearson, John M, Platt, Michael L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 939
container_issue 7
container_start_page 933
container_title Nature neuroscience
container_volume 14
creator Hayden, Benjamin Y
Pearson, John M
Platt, Michael L
description The authors record from primate dorsal anterior cingulate cortex (dACC) during a foraging task. They find that dACC neuronal responses were correlated with behavioral decisions about when to leave a depleting resource to exploit another. Deciding when to leave a depleting resource to exploit another is a fundamental problem for all decision makers. The neuronal mechanisms mediating patch-leaving decisions remain unknown. We found that neurons in primate ( Macaca mulatta ) dorsal anterior cingulate cortex, an area that is linked to reward monitoring and executive control, encode a decision variable signaling the relative value of leaving a depleting resource for a new one. Neurons fired during each sequential decision to stay in a patch and, for each travel time, these responses reached a fixed threshold for patch-leaving. Longer travel times reduced the gain of neural responses for choosing to stay in a patch and increased the firing rate threshold mandating patch-leaving. These modulations more closely matched behavioral decisions than any single task variable. These findings portend an understanding of the neural basis of foraging decisions and endorse the unification of theoretical and experimental work in ecology and neuroscience.
doi_str_mv 10.1038/nn.2856
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3553855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A260495054</galeid><sourcerecordid>A260495054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-73a2c137b6438ac33200307022201083b7453ce220fc444971d2480cc54b17143</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhoNYbF3FfyCDXmgvZj35ztwIpWgtFAU_rkMmm5mmzCTbZKbYf2-WXWu3FCSEJCfPeZP3cBB6hWGJgaoPISyJ4uIJOsKciRpLIp6WPTSyFoSLQ_Q85ysAkFw1z9AhwYKRRtIjdPbVzSkGM1StyT5Xsauyu55dmHyJdTGZ3oe-Wjnrs48hVz5UplqbyV7eVi7c-JI8FvoFOujMkN3L3bpAvz5_-nn6pb74dnZ-enJRW0HkVEtqiMVUtoJRZSylBICCBEIIYFC0lYxT68qps4yxRuIVYQqs5azFEjO6QB-3uuu5Hd3KlqeTGfQ6-dGkWx2N1_s3wV_qPt5oyjlVZS7Qu51AisVnnvTos3XDYIKLc9ZKUWCKKfJ_UjLcEMJlId88IK_inEpRC9QIJQFLKNDbLdSbwWkfulj-ZzeS-oQIYA0HvvG3fIQqY-VGb2NwnS_xvYTjvYTCTO731Js5Z33-4_s-u3NkU8w5ue6ubhj0po90CHrTR4V8fb_Md9zfxinA-y2Qy1XoXfpn-aHWHyk8zAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896870170</pqid></control><display><type>article</type><title>Neuronal basis of sequential foraging decisions in a patchy environment</title><source>MEDLINE</source><source>Springer Journals</source><source>Nature</source><creator>Hayden, Benjamin Y ; Pearson, John M ; Platt, Michael L</creator><creatorcontrib>Hayden, Benjamin Y ; Pearson, John M ; Platt, Michael L</creatorcontrib><description>The authors record from primate dorsal anterior cingulate cortex (dACC) during a foraging task. They find that dACC neuronal responses were correlated with behavioral decisions about when to leave a depleting resource to exploit another. Deciding when to leave a depleting resource to exploit another is a fundamental problem for all decision makers. The neuronal mechanisms mediating patch-leaving decisions remain unknown. We found that neurons in primate ( Macaca mulatta ) dorsal anterior cingulate cortex, an area that is linked to reward monitoring and executive control, encode a decision variable signaling the relative value of leaving a depleting resource for a new one. Neurons fired during each sequential decision to stay in a patch and, for each travel time, these responses reached a fixed threshold for patch-leaving. Longer travel times reduced the gain of neural responses for choosing to stay in a patch and increased the firing rate threshold mandating patch-leaving. These modulations more closely matched behavioral decisions than any single task variable. These findings portend an understanding of the neural basis of foraging decisions and endorse the unification of theoretical and experimental work in ecology and neuroscience.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.2856</identifier><identifier>PMID: 21642973</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1697 ; 631/378/2629 ; 631/378/2649/2150 ; Action Potentials - physiology ; Adaptation, Psychological ; Analysis of Variance ; Animal Genetics and Genomics ; Animals ; Behavior ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain Mapping ; Decision Making - physiology ; Environment ; Exploratory Behavior ; Eye Movements - physiology ; Foraging ; Gyrus Cinguli - cytology ; Gyrus Cinguli - physiology ; Hand Strength - physiology ; Macaca mulatta ; Magnetic Resonance Imaging ; Male ; Models, Biological ; Neural transmission ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Photic Stimulation ; Physiological aspects ; Primates ; Psychomotor Performance - physiology ; Reward ; Time Factors</subject><ispartof>Nature neuroscience, 2011-07, Vol.14 (7), p.933-939</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2011</rights><rights>2011 Nature America, Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-73a2c137b6438ac33200307022201083b7453ce220fc444971d2480cc54b17143</citedby><cites>FETCH-LOGICAL-c627t-73a2c137b6438ac33200307022201083b7453ce220fc444971d2480cc54b17143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.2856$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.2856$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21642973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayden, Benjamin Y</creatorcontrib><creatorcontrib>Pearson, John M</creatorcontrib><creatorcontrib>Platt, Michael L</creatorcontrib><title>Neuronal basis of sequential foraging decisions in a patchy environment</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors record from primate dorsal anterior cingulate cortex (dACC) during a foraging task. They find that dACC neuronal responses were correlated with behavioral decisions about when to leave a depleting resource to exploit another. Deciding when to leave a depleting resource to exploit another is a fundamental problem for all decision makers. The neuronal mechanisms mediating patch-leaving decisions remain unknown. We found that neurons in primate ( Macaca mulatta ) dorsal anterior cingulate cortex, an area that is linked to reward monitoring and executive control, encode a decision variable signaling the relative value of leaving a depleting resource for a new one. Neurons fired during each sequential decision to stay in a patch and, for each travel time, these responses reached a fixed threshold for patch-leaving. Longer travel times reduced the gain of neural responses for choosing to stay in a patch and increased the firing rate threshold mandating patch-leaving. These modulations more closely matched behavioral decisions than any single task variable. These findings portend an understanding of the neural basis of foraging decisions and endorse the unification of theoretical and experimental work in ecology and neuroscience.</description><subject>631/378/1697</subject><subject>631/378/2629</subject><subject>631/378/2649/2150</subject><subject>Action Potentials - physiology</subject><subject>Adaptation, Psychological</subject><subject>Analysis of Variance</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain Mapping</subject><subject>Decision Making - physiology</subject><subject>Environment</subject><subject>Exploratory Behavior</subject><subject>Eye Movements - physiology</subject><subject>Foraging</subject><subject>Gyrus Cinguli - cytology</subject><subject>Gyrus Cinguli - physiology</subject><subject>Hand Strength - physiology</subject><subject>Macaca mulatta</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Neural transmission</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Photic Stimulation</subject><subject>Physiological aspects</subject><subject>Primates</subject><subject>Psychomotor Performance - physiology</subject><subject>Reward</subject><subject>Time Factors</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkl1rFDEUhoNYbF3FfyCDXmgvZj35ztwIpWgtFAU_rkMmm5mmzCTbZKbYf2-WXWu3FCSEJCfPeZP3cBB6hWGJgaoPISyJ4uIJOsKciRpLIp6WPTSyFoSLQ_Q85ysAkFw1z9AhwYKRRtIjdPbVzSkGM1StyT5Xsauyu55dmHyJdTGZ3oe-Wjnrs48hVz5UplqbyV7eVi7c-JI8FvoFOujMkN3L3bpAvz5_-nn6pb74dnZ-enJRW0HkVEtqiMVUtoJRZSylBICCBEIIYFC0lYxT68qps4yxRuIVYQqs5azFEjO6QB-3uuu5Hd3KlqeTGfQ6-dGkWx2N1_s3wV_qPt5oyjlVZS7Qu51AisVnnvTos3XDYIKLc9ZKUWCKKfJ_UjLcEMJlId88IK_inEpRC9QIJQFLKNDbLdSbwWkfulj-ZzeS-oQIYA0HvvG3fIQqY-VGb2NwnS_xvYTjvYTCTO731Js5Z33-4_s-u3NkU8w5ue6ubhj0po90CHrTR4V8fb_Md9zfxinA-y2Qy1XoXfpn-aHWHyk8zAQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hayden, Benjamin Y</creator><creator>Pearson, John M</creator><creator>Platt, Michael L</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>Neuronal basis of sequential foraging decisions in a patchy environment</title><author>Hayden, Benjamin Y ; Pearson, John M ; Platt, Michael L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-73a2c137b6438ac33200307022201083b7453ce220fc444971d2480cc54b17143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/378/1697</topic><topic>631/378/2629</topic><topic>631/378/2649/2150</topic><topic>Action Potentials - physiology</topic><topic>Adaptation, Psychological</topic><topic>Analysis of Variance</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain Mapping</topic><topic>Decision Making - physiology</topic><topic>Environment</topic><topic>Exploratory Behavior</topic><topic>Eye Movements - physiology</topic><topic>Foraging</topic><topic>Gyrus Cinguli - cytology</topic><topic>Gyrus Cinguli - physiology</topic><topic>Hand Strength - physiology</topic><topic>Macaca mulatta</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Neural transmission</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Photic Stimulation</topic><topic>Physiological aspects</topic><topic>Primates</topic><topic>Psychomotor Performance - physiology</topic><topic>Reward</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayden, Benjamin Y</creatorcontrib><creatorcontrib>Pearson, John M</creatorcontrib><creatorcontrib>Platt, Michael L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayden, Benjamin Y</au><au>Pearson, John M</au><au>Platt, Michael L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuronal basis of sequential foraging decisions in a patchy environment</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>14</volume><issue>7</issue><spage>933</spage><epage>939</epage><pages>933-939</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The authors record from primate dorsal anterior cingulate cortex (dACC) during a foraging task. They find that dACC neuronal responses were correlated with behavioral decisions about when to leave a depleting resource to exploit another. Deciding when to leave a depleting resource to exploit another is a fundamental problem for all decision makers. The neuronal mechanisms mediating patch-leaving decisions remain unknown. We found that neurons in primate ( Macaca mulatta ) dorsal anterior cingulate cortex, an area that is linked to reward monitoring and executive control, encode a decision variable signaling the relative value of leaving a depleting resource for a new one. Neurons fired during each sequential decision to stay in a patch and, for each travel time, these responses reached a fixed threshold for patch-leaving. Longer travel times reduced the gain of neural responses for choosing to stay in a patch and increased the firing rate threshold mandating patch-leaving. These modulations more closely matched behavioral decisions than any single task variable. These findings portend an understanding of the neural basis of foraging decisions and endorse the unification of theoretical and experimental work in ecology and neuroscience.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>21642973</pmid><doi>10.1038/nn.2856</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2011-07, Vol.14 (7), p.933-939
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3553855
source MEDLINE; Springer Journals; Nature
subjects 631/378/1697
631/378/2629
631/378/2649/2150
Action Potentials - physiology
Adaptation, Psychological
Analysis of Variance
Animal Genetics and Genomics
Animals
Behavior
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain Mapping
Decision Making - physiology
Environment
Exploratory Behavior
Eye Movements - physiology
Foraging
Gyrus Cinguli - cytology
Gyrus Cinguli - physiology
Hand Strength - physiology
Macaca mulatta
Magnetic Resonance Imaging
Male
Models, Biological
Neural transmission
Neurobiology
Neurons
Neurons - physiology
Neurosciences
Photic Stimulation
Physiological aspects
Primates
Psychomotor Performance - physiology
Reward
Time Factors
title Neuronal basis of sequential foraging decisions in a patchy environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuronal%20basis%20of%20sequential%20foraging%20decisions%20in%20a%20patchy%20environment&rft.jtitle=Nature%20neuroscience&rft.au=Hayden,%20Benjamin%20Y&rft.date=2011-07-01&rft.volume=14&rft.issue=7&rft.spage=933&rft.epage=939&rft.pages=933-939&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.2856&rft_dat=%3Cgale_pubme%3EA260495054%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896870170&rft_id=info:pmid/21642973&rft_galeid=A260495054&rfr_iscdi=true