Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage
► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction & oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease. Mutations of the gene for glucocerebrosidase 1 (GBA) cause G...
Gespeichert in:
Veröffentlicht in: | Neurochemistry international 2013-01, Vol.62 (1), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Neurochemistry international |
container_volume | 62 |
creator | Cleeter, Michael W.J. Chau, Kai-Yin Gluck, Caroline Mehta, Atul Hughes, Derralynn A. Duchen, Michael Wood, Nicholas William Hardy, John Mark Cooper, J. Schapira, Anthony Henry |
description | ► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction & oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease.
Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain. |
doi_str_mv | 10.1016/j.neuint.2012.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3550523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0197018612003476</els_id><sourcerecordid>1272743256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCILoV_gFAuSFyy-CN24gsSqkpBqtRLy9V6sV-6XiV2sZNK_fc47FLKpSdL8-bNG88Q8p7RLaNMfd5vAy4-zFtOGS_QljL6gmxY1_Jat7J5STaU6bamrFMn5E3Oe0ppq6l8TU64oFoLqTfk58W42GgxYZ9i9g4yVj7sfO9nH0NlYcmYq8nP0e5icMnDWLmHPCzB_iFAcNWQEKsEztt1CBPc4lvyaoAx47vje0puvp1fn32vL68ufpx9vayt1HyupVLYFVeKAgdBJYLqUWoU2DtpdaMUdIMC27ZAB2AtNFIo0RXQNT1DJU7Jl4Pu3dJP6CyGOcFo7pKfID2YCN78Pwl-Z27jvRFSUslFEfh0FEjx14J5NpPPFscRAsYlG8Zb3jaCy_VWc6DaklROODyeYdSslZi9OVRi1kpWtFRS1j48tfi49LeDQvh4JEAuCQ4JgvX5H091Qij95K9YAr33mEy2HoNF5xPa2bjon3fyG0bSrtc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272743256</pqid></control><display><type>article</type><title>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cleeter, Michael W.J. ; Chau, Kai-Yin ; Gluck, Caroline ; Mehta, Atul ; Hughes, Derralynn A. ; Duchen, Michael ; Wood, Nicholas William ; Hardy, John ; Mark Cooper, J. ; Schapira, Anthony Henry</creator><creatorcontrib>Cleeter, Michael W.J. ; Chau, Kai-Yin ; Gluck, Caroline ; Mehta, Atul ; Hughes, Derralynn A. ; Duchen, Michael ; Wood, Nicholas William ; Hardy, John ; Mark Cooper, J. ; Schapira, Anthony Henry</creatorcontrib><description>► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction & oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease.
Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.</description><identifier>ISSN: 0197-0186</identifier><identifier>EISSN: 1872-9754</identifier><identifier>DOI: 10.1016/j.neuint.2012.10.010</identifier><identifier>PMID: 23099359</identifier><identifier>CODEN: NEUIDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - biosynthesis ; Alpha-synuclein ; Autophagy ; Biological and medical sciences ; Blotting, Western ; Brain ; Cell culture ; Cell death ; Cell Line ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Dopamine ; Electron Transport - drug effects ; Enzyme Inhibitors - pharmacology ; Free radicals ; Free Radicals - toxicity ; Gaucher disease ; Gaucher's disease ; Glucocerebrosidase ; Glucosylceramidase ; Glucosylceramidase - antagonists & inhibitors ; Glucosylceramidase - genetics ; Hereditary diseases ; Humans ; Indicators and Reagents ; Inositol - analogs & derivatives ; Inositol - pharmacology ; Lewy bodies ; lysosomal storage diseases ; Lysosomes - drug effects ; Medical sciences ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria ; Mitochondria - drug effects ; Movement disorders ; Mutation ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neurodegeneration ; Neurodegenerative diseases ; Neurology ; Oxidative stress ; Oxidative Stress - drug effects ; Parkinson's disease ; Phosphorylation ; Proteasome Endopeptidase Complex - drug effects ; Synuclein ; Ubiquitin - metabolism</subject><ispartof>Neurochemistry international, 2013-01, Vol.62 (1), p.1-7</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. 2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</citedby><cites>FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuint.2012.10.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26833696$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23099359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cleeter, Michael W.J.</creatorcontrib><creatorcontrib>Chau, Kai-Yin</creatorcontrib><creatorcontrib>Gluck, Caroline</creatorcontrib><creatorcontrib>Mehta, Atul</creatorcontrib><creatorcontrib>Hughes, Derralynn A.</creatorcontrib><creatorcontrib>Duchen, Michael</creatorcontrib><creatorcontrib>Wood, Nicholas William</creatorcontrib><creatorcontrib>Hardy, John</creatorcontrib><creatorcontrib>Mark Cooper, J.</creatorcontrib><creatorcontrib>Schapira, Anthony Henry</creatorcontrib><title>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</title><title>Neurochemistry international</title><addtitle>Neurochem Int</addtitle><description>► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction & oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease.
Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.</description><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Alpha-synuclein</subject><subject>Autophagy</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Brain</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Dopamine</subject><subject>Electron Transport - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Free radicals</subject><subject>Free Radicals - toxicity</subject><subject>Gaucher disease</subject><subject>Gaucher's disease</subject><subject>Glucocerebrosidase</subject><subject>Glucosylceramidase</subject><subject>Glucosylceramidase - antagonists & inhibitors</subject><subject>Glucosylceramidase - genetics</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Indicators and Reagents</subject><subject>Inositol - analogs & derivatives</subject><subject>Inositol - pharmacology</subject><subject>Lewy bodies</subject><subject>lysosomal storage diseases</subject><subject>Lysosomes - drug effects</subject><subject>Medical sciences</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Movement disorders</subject><subject>Mutation</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Parkinson's disease</subject><subject>Phosphorylation</subject><subject>Proteasome Endopeptidase Complex - drug effects</subject><subject>Synuclein</subject><subject>Ubiquitin - metabolism</subject><issn>0197-0186</issn><issn>1872-9754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAUtBCILoV_gFAuSFyy-CN24gsSqkpBqtRLy9V6sV-6XiV2sZNK_fc47FLKpSdL8-bNG88Q8p7RLaNMfd5vAy4-zFtOGS_QljL6gmxY1_Jat7J5STaU6bamrFMn5E3Oe0ppq6l8TU64oFoLqTfk58W42GgxYZ9i9g4yVj7sfO9nH0NlYcmYq8nP0e5icMnDWLmHPCzB_iFAcNWQEKsEztt1CBPc4lvyaoAx47vje0puvp1fn32vL68ufpx9vayt1HyupVLYFVeKAgdBJYLqUWoU2DtpdaMUdIMC27ZAB2AtNFIo0RXQNT1DJU7Jl4Pu3dJP6CyGOcFo7pKfID2YCN78Pwl-Z27jvRFSUslFEfh0FEjx14J5NpPPFscRAsYlG8Zb3jaCy_VWc6DaklROODyeYdSslZi9OVRi1kpWtFRS1j48tfi49LeDQvh4JEAuCQ4JgvX5H091Qij95K9YAr33mEy2HoNF5xPa2bjon3fyG0bSrtc</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Cleeter, Michael W.J.</creator><creator>Chau, Kai-Yin</creator><creator>Gluck, Caroline</creator><creator>Mehta, Atul</creator><creator>Hughes, Derralynn A.</creator><creator>Duchen, Michael</creator><creator>Wood, Nicholas William</creator><creator>Hardy, John</creator><creator>Mark Cooper, J.</creator><creator>Schapira, Anthony Henry</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>201301</creationdate><title>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</title><author>Cleeter, Michael W.J. ; Chau, Kai-Yin ; Gluck, Caroline ; Mehta, Atul ; Hughes, Derralynn A. ; Duchen, Michael ; Wood, Nicholas William ; Hardy, John ; Mark Cooper, J. ; Schapira, Anthony Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Alpha-synuclein</topic><topic>Autophagy</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Brain</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Dopamine</topic><topic>Electron Transport - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Free radicals</topic><topic>Free Radicals - toxicity</topic><topic>Gaucher disease</topic><topic>Gaucher's disease</topic><topic>Glucocerebrosidase</topic><topic>Glucosylceramidase</topic><topic>Glucosylceramidase - antagonists & inhibitors</topic><topic>Glucosylceramidase - genetics</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Indicators and Reagents</topic><topic>Inositol - analogs & derivatives</topic><topic>Inositol - pharmacology</topic><topic>Lewy bodies</topic><topic>lysosomal storage diseases</topic><topic>Lysosomes - drug effects</topic><topic>Medical sciences</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Movement disorders</topic><topic>Mutation</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Parkinson's disease</topic><topic>Phosphorylation</topic><topic>Proteasome Endopeptidase Complex - drug effects</topic><topic>Synuclein</topic><topic>Ubiquitin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cleeter, Michael W.J.</creatorcontrib><creatorcontrib>Chau, Kai-Yin</creatorcontrib><creatorcontrib>Gluck, Caroline</creatorcontrib><creatorcontrib>Mehta, Atul</creatorcontrib><creatorcontrib>Hughes, Derralynn A.</creatorcontrib><creatorcontrib>Duchen, Michael</creatorcontrib><creatorcontrib>Wood, Nicholas William</creatorcontrib><creatorcontrib>Hardy, John</creatorcontrib><creatorcontrib>Mark Cooper, J.</creatorcontrib><creatorcontrib>Schapira, Anthony Henry</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurochemistry international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cleeter, Michael W.J.</au><au>Chau, Kai-Yin</au><au>Gluck, Caroline</au><au>Mehta, Atul</au><au>Hughes, Derralynn A.</au><au>Duchen, Michael</au><au>Wood, Nicholas William</au><au>Hardy, John</au><au>Mark Cooper, J.</au><au>Schapira, Anthony Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</atitle><jtitle>Neurochemistry international</jtitle><addtitle>Neurochem Int</addtitle><date>2013-01</date><risdate>2013</risdate><volume>62</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0197-0186</issn><eissn>1872-9754</eissn><coden>NEUIDS</coden><abstract>► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction & oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease.
Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23099359</pmid><doi>10.1016/j.neuint.2012.10.010</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-0186 |
ispartof | Neurochemistry international, 2013-01, Vol.62 (1), p.1-7 |
issn | 0197-0186 1872-9754 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3550523 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adenosine Diphosphate - metabolism Adenosine Triphosphate - biosynthesis Alpha-synuclein Autophagy Biological and medical sciences Blotting, Western Brain Cell culture Cell death Cell Line Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Dopamine Electron Transport - drug effects Enzyme Inhibitors - pharmacology Free radicals Free Radicals - toxicity Gaucher disease Gaucher's disease Glucocerebrosidase Glucosylceramidase Glucosylceramidase - antagonists & inhibitors Glucosylceramidase - genetics Hereditary diseases Humans Indicators and Reagents Inositol - analogs & derivatives Inositol - pharmacology Lewy bodies lysosomal storage diseases Lysosomes - drug effects Medical sciences Membrane potential Membrane Potential, Mitochondrial - drug effects Mitochondria Mitochondria - drug effects Movement disorders Mutation Nervous system (semeiology, syndromes) Nervous system as a whole Neurodegeneration Neurodegenerative diseases Neurology Oxidative stress Oxidative Stress - drug effects Parkinson's disease Phosphorylation Proteasome Endopeptidase Complex - drug effects Synuclein Ubiquitin - metabolism |
title | Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucocerebrosidase%20inhibition%20causes%20mitochondrial%20dysfunction%20and%20free%20radical%20damage&rft.jtitle=Neurochemistry%20international&rft.au=Cleeter,%20Michael%20W.J.&rft.date=2013-01&rft.volume=62&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0197-0186&rft.eissn=1872-9754&rft.coden=NEUIDS&rft_id=info:doi/10.1016/j.neuint.2012.10.010&rft_dat=%3Cproquest_pubme%3E1272743256%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272743256&rft_id=info:pmid/23099359&rft_els_id=S0197018612003476&rfr_iscdi=true |