Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage

► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction & oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease. Mutations of the gene for glucocerebrosidase 1 (GBA) cause G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemistry international 2013-01, Vol.62 (1), p.1-7
Hauptverfasser: Cleeter, Michael W.J., Chau, Kai-Yin, Gluck, Caroline, Mehta, Atul, Hughes, Derralynn A., Duchen, Michael, Wood, Nicholas William, Hardy, John, Mark Cooper, J., Schapira, Anthony Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 1
container_title Neurochemistry international
container_volume 62
creator Cleeter, Michael W.J.
Chau, Kai-Yin
Gluck, Caroline
Mehta, Atul
Hughes, Derralynn A.
Duchen, Michael
Wood, Nicholas William
Hardy, John
Mark Cooper, J.
Schapira, Anthony Henry
description ► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction & oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease. Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.
doi_str_mv 10.1016/j.neuint.2012.10.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3550523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0197018612003476</els_id><sourcerecordid>1272743256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCILoV_gFAuSFyy-CN24gsSqkpBqtRLy9V6sV-6XiV2sZNK_fc47FLKpSdL8-bNG88Q8p7RLaNMfd5vAy4-zFtOGS_QljL6gmxY1_Jat7J5STaU6bamrFMn5E3Oe0ppq6l8TU64oFoLqTfk58W42GgxYZ9i9g4yVj7sfO9nH0NlYcmYq8nP0e5icMnDWLmHPCzB_iFAcNWQEKsEztt1CBPc4lvyaoAx47vje0puvp1fn32vL68ufpx9vayt1HyupVLYFVeKAgdBJYLqUWoU2DtpdaMUdIMC27ZAB2AtNFIo0RXQNT1DJU7Jl4Pu3dJP6CyGOcFo7pKfID2YCN78Pwl-Z27jvRFSUslFEfh0FEjx14J5NpPPFscRAsYlG8Zb3jaCy_VWc6DaklROODyeYdSslZi9OVRi1kpWtFRS1j48tfi49LeDQvh4JEAuCQ4JgvX5H091Qij95K9YAr33mEy2HoNF5xPa2bjon3fyG0bSrtc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272743256</pqid></control><display><type>article</type><title>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cleeter, Michael W.J. ; Chau, Kai-Yin ; Gluck, Caroline ; Mehta, Atul ; Hughes, Derralynn A. ; Duchen, Michael ; Wood, Nicholas William ; Hardy, John ; Mark Cooper, J. ; Schapira, Anthony Henry</creator><creatorcontrib>Cleeter, Michael W.J. ; Chau, Kai-Yin ; Gluck, Caroline ; Mehta, Atul ; Hughes, Derralynn A. ; Duchen, Michael ; Wood, Nicholas William ; Hardy, John ; Mark Cooper, J. ; Schapira, Anthony Henry</creatorcontrib><description>► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction &amp; oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease. Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.</description><identifier>ISSN: 0197-0186</identifier><identifier>EISSN: 1872-9754</identifier><identifier>DOI: 10.1016/j.neuint.2012.10.010</identifier><identifier>PMID: 23099359</identifier><identifier>CODEN: NEUIDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - biosynthesis ; Alpha-synuclein ; Autophagy ; Biological and medical sciences ; Blotting, Western ; Brain ; Cell culture ; Cell death ; Cell Line ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Dopamine ; Electron Transport - drug effects ; Enzyme Inhibitors - pharmacology ; Free radicals ; Free Radicals - toxicity ; Gaucher disease ; Gaucher's disease ; Glucocerebrosidase ; Glucosylceramidase ; Glucosylceramidase - antagonists &amp; inhibitors ; Glucosylceramidase - genetics ; Hereditary diseases ; Humans ; Indicators and Reagents ; Inositol - analogs &amp; derivatives ; Inositol - pharmacology ; Lewy bodies ; lysosomal storage diseases ; Lysosomes - drug effects ; Medical sciences ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria ; Mitochondria - drug effects ; Movement disorders ; Mutation ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neurodegeneration ; Neurodegenerative diseases ; Neurology ; Oxidative stress ; Oxidative Stress - drug effects ; Parkinson's disease ; Phosphorylation ; Proteasome Endopeptidase Complex - drug effects ; Synuclein ; Ubiquitin - metabolism</subject><ispartof>Neurochemistry international, 2013-01, Vol.62 (1), p.1-7</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. 2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</citedby><cites>FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuint.2012.10.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26833696$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23099359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cleeter, Michael W.J.</creatorcontrib><creatorcontrib>Chau, Kai-Yin</creatorcontrib><creatorcontrib>Gluck, Caroline</creatorcontrib><creatorcontrib>Mehta, Atul</creatorcontrib><creatorcontrib>Hughes, Derralynn A.</creatorcontrib><creatorcontrib>Duchen, Michael</creatorcontrib><creatorcontrib>Wood, Nicholas William</creatorcontrib><creatorcontrib>Hardy, John</creatorcontrib><creatorcontrib>Mark Cooper, J.</creatorcontrib><creatorcontrib>Schapira, Anthony Henry</creatorcontrib><title>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</title><title>Neurochemistry international</title><addtitle>Neurochem Int</addtitle><description>► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction &amp; oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease. Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.</description><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Alpha-synuclein</subject><subject>Autophagy</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Brain</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Dopamine</subject><subject>Electron Transport - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Free radicals</subject><subject>Free Radicals - toxicity</subject><subject>Gaucher disease</subject><subject>Gaucher's disease</subject><subject>Glucocerebrosidase</subject><subject>Glucosylceramidase</subject><subject>Glucosylceramidase - antagonists &amp; inhibitors</subject><subject>Glucosylceramidase - genetics</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Indicators and Reagents</subject><subject>Inositol - analogs &amp; derivatives</subject><subject>Inositol - pharmacology</subject><subject>Lewy bodies</subject><subject>lysosomal storage diseases</subject><subject>Lysosomes - drug effects</subject><subject>Medical sciences</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Movement disorders</subject><subject>Mutation</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Parkinson's disease</subject><subject>Phosphorylation</subject><subject>Proteasome Endopeptidase Complex - drug effects</subject><subject>Synuclein</subject><subject>Ubiquitin - metabolism</subject><issn>0197-0186</issn><issn>1872-9754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAUtBCILoV_gFAuSFyy-CN24gsSqkpBqtRLy9V6sV-6XiV2sZNK_fc47FLKpSdL8-bNG88Q8p7RLaNMfd5vAy4-zFtOGS_QljL6gmxY1_Jat7J5STaU6bamrFMn5E3Oe0ppq6l8TU64oFoLqTfk58W42GgxYZ9i9g4yVj7sfO9nH0NlYcmYq8nP0e5icMnDWLmHPCzB_iFAcNWQEKsEztt1CBPc4lvyaoAx47vje0puvp1fn32vL68ufpx9vayt1HyupVLYFVeKAgdBJYLqUWoU2DtpdaMUdIMC27ZAB2AtNFIo0RXQNT1DJU7Jl4Pu3dJP6CyGOcFo7pKfID2YCN78Pwl-Z27jvRFSUslFEfh0FEjx14J5NpPPFscRAsYlG8Zb3jaCy_VWc6DaklROODyeYdSslZi9OVRi1kpWtFRS1j48tfi49LeDQvh4JEAuCQ4JgvX5H091Qij95K9YAr33mEy2HoNF5xPa2bjon3fyG0bSrtc</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Cleeter, Michael W.J.</creator><creator>Chau, Kai-Yin</creator><creator>Gluck, Caroline</creator><creator>Mehta, Atul</creator><creator>Hughes, Derralynn A.</creator><creator>Duchen, Michael</creator><creator>Wood, Nicholas William</creator><creator>Hardy, John</creator><creator>Mark Cooper, J.</creator><creator>Schapira, Anthony Henry</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>201301</creationdate><title>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</title><author>Cleeter, Michael W.J. ; Chau, Kai-Yin ; Gluck, Caroline ; Mehta, Atul ; Hughes, Derralynn A. ; Duchen, Michael ; Wood, Nicholas William ; Hardy, John ; Mark Cooper, J. ; Schapira, Anthony Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-566e800760a2a305ea6be59e3ebd5c9466a8f6ac77a0fa17a453638a8fd4b1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Alpha-synuclein</topic><topic>Autophagy</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Brain</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Dopamine</topic><topic>Electron Transport - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Free radicals</topic><topic>Free Radicals - toxicity</topic><topic>Gaucher disease</topic><topic>Gaucher's disease</topic><topic>Glucocerebrosidase</topic><topic>Glucosylceramidase</topic><topic>Glucosylceramidase - antagonists &amp; inhibitors</topic><topic>Glucosylceramidase - genetics</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Indicators and Reagents</topic><topic>Inositol - analogs &amp; derivatives</topic><topic>Inositol - pharmacology</topic><topic>Lewy bodies</topic><topic>lysosomal storage diseases</topic><topic>Lysosomes - drug effects</topic><topic>Medical sciences</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Movement disorders</topic><topic>Mutation</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Parkinson's disease</topic><topic>Phosphorylation</topic><topic>Proteasome Endopeptidase Complex - drug effects</topic><topic>Synuclein</topic><topic>Ubiquitin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cleeter, Michael W.J.</creatorcontrib><creatorcontrib>Chau, Kai-Yin</creatorcontrib><creatorcontrib>Gluck, Caroline</creatorcontrib><creatorcontrib>Mehta, Atul</creatorcontrib><creatorcontrib>Hughes, Derralynn A.</creatorcontrib><creatorcontrib>Duchen, Michael</creatorcontrib><creatorcontrib>Wood, Nicholas William</creatorcontrib><creatorcontrib>Hardy, John</creatorcontrib><creatorcontrib>Mark Cooper, J.</creatorcontrib><creatorcontrib>Schapira, Anthony Henry</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurochemistry international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cleeter, Michael W.J.</au><au>Chau, Kai-Yin</au><au>Gluck, Caroline</au><au>Mehta, Atul</au><au>Hughes, Derralynn A.</au><au>Duchen, Michael</au><au>Wood, Nicholas William</au><au>Hardy, John</au><au>Mark Cooper, J.</au><au>Schapira, Anthony Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage</atitle><jtitle>Neurochemistry international</jtitle><addtitle>Neurochem Int</addtitle><date>2013-01</date><risdate>2013</risdate><volume>62</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0197-0186</issn><eissn>1872-9754</eissn><coden>NEUIDS</coden><abstract>► Glucocerebrosidase gene mutations are a risk factor for Parkinson’s disease. ► Glucocerebrosidase inhibition causes mitochondrial dysfunction &amp; oxidative stress. ► These changes parallel important pathogenetic of Parkinson’s disease. Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23099359</pmid><doi>10.1016/j.neuint.2012.10.010</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0197-0186
ispartof Neurochemistry international, 2013-01, Vol.62 (1), p.1-7
issn 0197-0186
1872-9754
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3550523
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adenosine Diphosphate - metabolism
Adenosine Triphosphate - biosynthesis
Alpha-synuclein
Autophagy
Biological and medical sciences
Blotting, Western
Brain
Cell culture
Cell death
Cell Line
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dopamine
Electron Transport - drug effects
Enzyme Inhibitors - pharmacology
Free radicals
Free Radicals - toxicity
Gaucher disease
Gaucher's disease
Glucocerebrosidase
Glucosylceramidase
Glucosylceramidase - antagonists & inhibitors
Glucosylceramidase - genetics
Hereditary diseases
Humans
Indicators and Reagents
Inositol - analogs & derivatives
Inositol - pharmacology
Lewy bodies
lysosomal storage diseases
Lysosomes - drug effects
Medical sciences
Membrane potential
Membrane Potential, Mitochondrial - drug effects
Mitochondria
Mitochondria - drug effects
Movement disorders
Mutation
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurodegeneration
Neurodegenerative diseases
Neurology
Oxidative stress
Oxidative Stress - drug effects
Parkinson's disease
Phosphorylation
Proteasome Endopeptidase Complex - drug effects
Synuclein
Ubiquitin - metabolism
title Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucocerebrosidase%20inhibition%20causes%20mitochondrial%20dysfunction%20and%20free%20radical%20damage&rft.jtitle=Neurochemistry%20international&rft.au=Cleeter,%20Michael%20W.J.&rft.date=2013-01&rft.volume=62&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0197-0186&rft.eissn=1872-9754&rft.coden=NEUIDS&rft_id=info:doi/10.1016/j.neuint.2012.10.010&rft_dat=%3Cproquest_pubme%3E1272743256%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272743256&rft_id=info:pmid/23099359&rft_els_id=S0197018612003476&rfr_iscdi=true