Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces

Cell–cell and cell–matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-01, Vol.110 (3), p.842-847
Hauptverfasser: Mertz, Aaron F., Che, Yonglu, Banerjee, Shiladitya, Goldstein, Jill M., Rosowski, Kathryn A., Revilla, Stephen F., Niessen, Carien M., Marchetti, M. Cristina, Dufresne, Eric R., Horsley, Valerie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 847
container_issue 3
container_start_page 842
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Mertz, Aaron F.
Che, Yonglu
Banerjee, Shiladitya
Goldstein, Jill M.
Rosowski, Kathryn A.
Revilla, Stephen F.
Niessen, Carien M.
Marchetti, M. Cristina
Dufresne, Eric R.
Horsley, Valerie
description Cell–cell and cell–matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell–cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell–cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.
doi_str_mv 10.1073/pnas.1217279110
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3549115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42006366</jstor_id><sourcerecordid>42006366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-489336d46b22934171a993644f61bacac240625785974aad1f16e42566dc5fe73</originalsourceid><addsrcrecordid>eNpVkc1uEzEUhS0EoqGwZgWMxHrae_0bb5CqqPxIlVhAJXbWzYwncTQZB3uCgFXfgTfkSfAoIYWVF-c7x0f3MPYc4QLBiMvdQPkCORpuLCI8YDMEi7WWFh6yGQA39Vxyecae5LwBAKvm8JidccGNUUrM2JcFtWufwlAvKfu2CsPoU-P7ft9TqiYthzjkKqYVDeGnr_wujGvfB-qrCft992tLYwrfqzFRMxa26mIJyE_Zo4767J8d33N2-_b68-J9ffPx3YfF1U3dKKXGWs6tELqVesm5FRINkrVCS9lpXFJDDZeguTJzZY0karFD7SVXWreN6rwR5-zNIXe3X2592_ihFOndLoUtpR8uUnD_K0NYu1X85oSS5WSqBLw-BqT4de_z6DZxn4bS2SE3oLSwMFGXB6pJMefku9MPCG6awk1TuPspiuPlv8VO_N_bF-DFEZicp7iSJ1wZ7V7f5DGmEyA5gBZaF_3VQe8oOlqlkN3tJw6oAbDYQYg_bHSjjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270563905</pqid></control><display><type>article</type><title>Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mertz, Aaron F. ; Che, Yonglu ; Banerjee, Shiladitya ; Goldstein, Jill M. ; Rosowski, Kathryn A. ; Revilla, Stephen F. ; Niessen, Carien M. ; Marchetti, M. Cristina ; Dufresne, Eric R. ; Horsley, Valerie</creator><creatorcontrib>Mertz, Aaron F. ; Che, Yonglu ; Banerjee, Shiladitya ; Goldstein, Jill M. ; Rosowski, Kathryn A. ; Revilla, Stephen F. ; Niessen, Carien M. ; Marchetti, M. Cristina ; Dufresne, Eric R. ; Horsley, Valerie</creatorcontrib><description>Cell–cell and cell–matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell–cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell–cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1217279110</identifier><identifier>PMID: 23277553</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Animals ; Biological Sciences ; Biophysical Phenomena ; Cadherins ; Cadherins - antagonists &amp; inhibitors ; Cadherins - deficiency ; Cadherins - genetics ; Cadherins - physiology ; Calcium ; Calcium - pharmacology ; Cell adhesion ; Cell adhesion &amp; migration ; Cell Adhesion - drug effects ; Cell Adhesion - physiology ; Cells, Cultured ; Cellular biology ; Culture Media - analysis ; Endothelial cells ; Epithelial cells ; Flux density ; Focal adhesions ; Gene expression ; Gene Knockdown Techniques ; Gene Knockout Techniques ; Homeostasis ; Intercellular Junctions - drug effects ; Intercellular Junctions - physiology ; Keratinocytes ; Keratinocytes - drug effects ; Keratinocytes - physiology ; Mechanotransduction, Cellular - drug effects ; Mechanotransduction, Cellular - physiology ; Mice ; Models, Biological ; Physical Sciences ; RNA, Small Interfering - genetics ; Rodents ; Signal transduction ; Stem cells ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.842-847</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-489336d46b22934171a993644f61bacac240625785974aad1f16e42566dc5fe73</citedby><cites>FETCH-LOGICAL-c555t-489336d46b22934171a993644f61bacac240625785974aad1f16e42566dc5fe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42006366$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42006366$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23277553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mertz, Aaron F.</creatorcontrib><creatorcontrib>Che, Yonglu</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Goldstein, Jill M.</creatorcontrib><creatorcontrib>Rosowski, Kathryn A.</creatorcontrib><creatorcontrib>Revilla, Stephen F.</creatorcontrib><creatorcontrib>Niessen, Carien M.</creatorcontrib><creatorcontrib>Marchetti, M. Cristina</creatorcontrib><creatorcontrib>Dufresne, Eric R.</creatorcontrib><creatorcontrib>Horsley, Valerie</creatorcontrib><title>Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cell–cell and cell–matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell–cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell–cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.</description><subject>Actins</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biophysical Phenomena</subject><subject>Cadherins</subject><subject>Cadherins - antagonists &amp; inhibitors</subject><subject>Cadherins - deficiency</subject><subject>Cadherins - genetics</subject><subject>Cadherins - physiology</subject><subject>Calcium</subject><subject>Calcium - pharmacology</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Adhesion - physiology</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Culture Media - analysis</subject><subject>Endothelial cells</subject><subject>Epithelial cells</subject><subject>Flux density</subject><subject>Focal adhesions</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Knockout Techniques</subject><subject>Homeostasis</subject><subject>Intercellular Junctions - drug effects</subject><subject>Intercellular Junctions - physiology</subject><subject>Keratinocytes</subject><subject>Keratinocytes - drug effects</subject><subject>Keratinocytes - physiology</subject><subject>Mechanotransduction, Cellular - drug effects</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Physical Sciences</subject><subject>RNA, Small Interfering - genetics</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1uEzEUhS0EoqGwZgWMxHrae_0bb5CqqPxIlVhAJXbWzYwncTQZB3uCgFXfgTfkSfAoIYWVF-c7x0f3MPYc4QLBiMvdQPkCORpuLCI8YDMEi7WWFh6yGQA39Vxyecae5LwBAKvm8JidccGNUUrM2JcFtWufwlAvKfu2CsPoU-P7ft9TqiYthzjkKqYVDeGnr_wujGvfB-qrCft992tLYwrfqzFRMxa26mIJyE_Zo4767J8d33N2-_b68-J9ffPx3YfF1U3dKKXGWs6tELqVesm5FRINkrVCS9lpXFJDDZeguTJzZY0karFD7SVXWreN6rwR5-zNIXe3X2592_ihFOndLoUtpR8uUnD_K0NYu1X85oSS5WSqBLw-BqT4de_z6DZxn4bS2SE3oLSwMFGXB6pJMefku9MPCG6awk1TuPspiuPlv8VO_N_bF-DFEZicp7iSJ1wZ7V7f5DGmEyA5gBZaF_3VQe8oOlqlkN3tJw6oAbDYQYg_bHSjjA</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Mertz, Aaron F.</creator><creator>Che, Yonglu</creator><creator>Banerjee, Shiladitya</creator><creator>Goldstein, Jill M.</creator><creator>Rosowski, Kathryn A.</creator><creator>Revilla, Stephen F.</creator><creator>Niessen, Carien M.</creator><creator>Marchetti, M. Cristina</creator><creator>Dufresne, Eric R.</creator><creator>Horsley, Valerie</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130115</creationdate><title>Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces</title><author>Mertz, Aaron F. ; Che, Yonglu ; Banerjee, Shiladitya ; Goldstein, Jill M. ; Rosowski, Kathryn A. ; Revilla, Stephen F. ; Niessen, Carien M. ; Marchetti, M. Cristina ; Dufresne, Eric R. ; Horsley, Valerie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-489336d46b22934171a993644f61bacac240625785974aad1f16e42566dc5fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actins</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biophysical Phenomena</topic><topic>Cadherins</topic><topic>Cadherins - antagonists &amp; inhibitors</topic><topic>Cadherins - deficiency</topic><topic>Cadherins - genetics</topic><topic>Cadherins - physiology</topic><topic>Calcium</topic><topic>Calcium - pharmacology</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Adhesion - physiology</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Culture Media - analysis</topic><topic>Endothelial cells</topic><topic>Epithelial cells</topic><topic>Flux density</topic><topic>Focal adhesions</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Knockout Techniques</topic><topic>Homeostasis</topic><topic>Intercellular Junctions - drug effects</topic><topic>Intercellular Junctions - physiology</topic><topic>Keratinocytes</topic><topic>Keratinocytes - drug effects</topic><topic>Keratinocytes - physiology</topic><topic>Mechanotransduction, Cellular - drug effects</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Physical Sciences</topic><topic>RNA, Small Interfering - genetics</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mertz, Aaron F.</creatorcontrib><creatorcontrib>Che, Yonglu</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Goldstein, Jill M.</creatorcontrib><creatorcontrib>Rosowski, Kathryn A.</creatorcontrib><creatorcontrib>Revilla, Stephen F.</creatorcontrib><creatorcontrib>Niessen, Carien M.</creatorcontrib><creatorcontrib>Marchetti, M. Cristina</creatorcontrib><creatorcontrib>Dufresne, Eric R.</creatorcontrib><creatorcontrib>Horsley, Valerie</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mertz, Aaron F.</au><au>Che, Yonglu</au><au>Banerjee, Shiladitya</au><au>Goldstein, Jill M.</au><au>Rosowski, Kathryn A.</au><au>Revilla, Stephen F.</au><au>Niessen, Carien M.</au><au>Marchetti, M. Cristina</au><au>Dufresne, Eric R.</au><au>Horsley, Valerie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>110</volume><issue>3</issue><spage>842</spage><epage>847</epage><pages>842-847</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cell–cell and cell–matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell–cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell–cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23277553</pmid><doi>10.1073/pnas.1217279110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.842-847
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3549115
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actins
Animals
Biological Sciences
Biophysical Phenomena
Cadherins
Cadherins - antagonists & inhibitors
Cadherins - deficiency
Cadherins - genetics
Cadherins - physiology
Calcium
Calcium - pharmacology
Cell adhesion
Cell adhesion & migration
Cell Adhesion - drug effects
Cell Adhesion - physiology
Cells, Cultured
Cellular biology
Culture Media - analysis
Endothelial cells
Epithelial cells
Flux density
Focal adhesions
Gene expression
Gene Knockdown Techniques
Gene Knockout Techniques
Homeostasis
Intercellular Junctions - drug effects
Intercellular Junctions - physiology
Keratinocytes
Keratinocytes - drug effects
Keratinocytes - physiology
Mechanotransduction, Cellular - drug effects
Mechanotransduction, Cellular - physiology
Mice
Models, Biological
Physical Sciences
RNA, Small Interfering - genetics
Rodents
Signal transduction
Stem cells
Tissues
title Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadherin-based%20intercellular%20adhesions%20organize%20epithelial%20cell%E2%80%93matrix%20traction%20forces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mertz,%20Aaron%20F.&rft.date=2013-01-15&rft.volume=110&rft.issue=3&rft.spage=842&rft.epage=847&rft.pages=842-847&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1217279110&rft_dat=%3Cjstor_pubme%3E42006366%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270563905&rft_id=info:pmid/23277553&rft_jstor_id=42006366&rfr_iscdi=true