Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells

Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-01, Vol.288 (3), p.1896-1906
Hauptverfasser: Haataja, Leena, Snapp, Erik, Wright, Jordan, Liu, Ming, Hardy, Alexandre B., Wheeler, Michael B., Markwardt, Michele L., Rizzo, Megan A., Arvan, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1906
container_issue 3
container_start_page 1896
container_title The Journal of biological chemistry
container_volume 288
creator Haataja, Leena
Snapp, Erik
Wright, Jordan
Liu, Ming
Hardy, Alexandre B.
Wheeler, Michael B.
Markwardt, Michele L.
Rizzo, Megan A.
Arvan, Peter
description Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER. Background: Proinsulin assembly is linked to its intracellular transport. Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region. Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions. Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states.
doi_str_mv 10.1074/jbc.M112.420018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820466025</els_id><sourcerecordid>1273702887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</originalsourceid><addsrcrecordid>eNp1kc9O3DAQxq2qFSyUc29Vjr1k8ThOYl8qVSv-SaAiQSXExXLsCZhmbWonSLxWH4RnwqsAag_4MrLnN9-M5yPkC9Al0Jbv33VmeQbAlpxRCuIDWQAVVVnVcPWRLChlUEpWi22yk9IdzYdL2CLbrGKs4rxZkOvzGJxP0-B8ceJHjOswoJkGHeerNqMLPhV2is7fFBdoIo4hPhaXUfe9M783r7n2XPuc0aMzxdPfYoXDkD6TT70eEu69xF3y6_DgcnVcnv48Oln9OC0NF3IsLRXQdk3TA5qupbTt-ppZSi3vGgmSM1ELBG1NgxR6w2WbB7fSorV9Bx2rdsn3Wfd-6tZoDfox6kHdR7fW8VEF7dT_Ge9u1U14UFXNBZciC3x7EYjhz4RpVGuXTP6C9himpIC1VUuZEG1G92fUxJBSxP6tDVC1cURlR9TGETU7kiu-_jvdG_9qQQbkDGDe0YPDqJJx6A1aF9GMygb3rvgzQBCd5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273702887</pqid></control><display><type>article</type><title>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Haataja, Leena ; Snapp, Erik ; Wright, Jordan ; Liu, Ming ; Hardy, Alexandre B. ; Wheeler, Michael B. ; Markwardt, Michele L. ; Rizzo, Megan A. ; Arvan, Peter</creator><creatorcontrib>Haataja, Leena ; Snapp, Erik ; Wright, Jordan ; Liu, Ming ; Hardy, Alexandre B. ; Wheeler, Michael B. ; Markwardt, Michele L. ; Rizzo, Megan A. ; Arvan, Peter</creatorcontrib><description>Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER. Background: Proinsulin assembly is linked to its intracellular transport. Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region. Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions. Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.420018</identifier><identifier>PMID: 23223446</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Akita Proinsulin ; Animals ; C-Peptide - chemistry ; C-Peptide - genetics ; C-Peptide - metabolism ; Cell Biology ; Cell Line, Tumor ; Chlorocebus aethiops ; COS Cells ; Dimerization ; Endoplasmic Reticulum (ER) ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; FRET ; Gene Expression ; Golgi ; Golgi Apparatus - genetics ; Golgi Apparatus - metabolism ; Golgi Apparatus - ultrastructure ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; GRINCH ; hPro-CpepSfCerulean ; hPro-CpepSfGFP ; hPro-CpepSfVenus ; Humans ; Insulin - chemistry ; Insulin - genetics ; Insulin - metabolism ; Insulin Synthesis ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Kinetics ; Mice ; Microscopy, Confocal ; Plasmids ; Protein Binding ; Protein Folding ; Protein Transport ; Rats ; Transfection ; β Cell</subject><ispartof>The Journal of biological chemistry, 2013-01, Vol.288 (3), p.1896-1906</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</citedby><cites>FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548498/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548498/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23223446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haataja, Leena</creatorcontrib><creatorcontrib>Snapp, Erik</creatorcontrib><creatorcontrib>Wright, Jordan</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hardy, Alexandre B.</creatorcontrib><creatorcontrib>Wheeler, Michael B.</creatorcontrib><creatorcontrib>Markwardt, Michele L.</creatorcontrib><creatorcontrib>Rizzo, Megan A.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><title>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER. Background: Proinsulin assembly is linked to its intracellular transport. Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region. Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions. Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states.</description><subject>Akita Proinsulin</subject><subject>Animals</subject><subject>C-Peptide - chemistry</subject><subject>C-Peptide - genetics</subject><subject>C-Peptide - metabolism</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>Dimerization</subject><subject>Endoplasmic Reticulum (ER)</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>FRET</subject><subject>Gene Expression</subject><subject>Golgi</subject><subject>Golgi Apparatus - genetics</subject><subject>Golgi Apparatus - metabolism</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>GRINCH</subject><subject>hPro-CpepSfCerulean</subject><subject>hPro-CpepSfGFP</subject><subject>hPro-CpepSfVenus</subject><subject>Humans</subject><subject>Insulin - chemistry</subject><subject>Insulin - genetics</subject><subject>Insulin - metabolism</subject><subject>Insulin Synthesis</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Microscopy, Confocal</subject><subject>Plasmids</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Transport</subject><subject>Rats</subject><subject>Transfection</subject><subject>β Cell</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9O3DAQxq2qFSyUc29Vjr1k8ThOYl8qVSv-SaAiQSXExXLsCZhmbWonSLxWH4RnwqsAag_4MrLnN9-M5yPkC9Al0Jbv33VmeQbAlpxRCuIDWQAVVVnVcPWRLChlUEpWi22yk9IdzYdL2CLbrGKs4rxZkOvzGJxP0-B8ceJHjOswoJkGHeerNqMLPhV2is7fFBdoIo4hPhaXUfe9M783r7n2XPuc0aMzxdPfYoXDkD6TT70eEu69xF3y6_DgcnVcnv48Oln9OC0NF3IsLRXQdk3TA5qupbTt-ppZSi3vGgmSM1ELBG1NgxR6w2WbB7fSorV9Bx2rdsn3Wfd-6tZoDfox6kHdR7fW8VEF7dT_Ge9u1U14UFXNBZciC3x7EYjhz4RpVGuXTP6C9himpIC1VUuZEG1G92fUxJBSxP6tDVC1cURlR9TGETU7kiu-_jvdG_9qQQbkDGDe0YPDqJJx6A1aF9GMygb3rvgzQBCd5w</recordid><startdate>20130118</startdate><enddate>20130118</enddate><creator>Haataja, Leena</creator><creator>Snapp, Erik</creator><creator>Wright, Jordan</creator><creator>Liu, Ming</creator><creator>Hardy, Alexandre B.</creator><creator>Wheeler, Michael B.</creator><creator>Markwardt, Michele L.</creator><creator>Rizzo, Megan A.</creator><creator>Arvan, Peter</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130118</creationdate><title>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</title><author>Haataja, Leena ; Snapp, Erik ; Wright, Jordan ; Liu, Ming ; Hardy, Alexandre B. ; Wheeler, Michael B. ; Markwardt, Michele L. ; Rizzo, Megan A. ; Arvan, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Akita Proinsulin</topic><topic>Animals</topic><topic>C-Peptide - chemistry</topic><topic>C-Peptide - genetics</topic><topic>C-Peptide - metabolism</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>Dimerization</topic><topic>Endoplasmic Reticulum (ER)</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>FRET</topic><topic>Gene Expression</topic><topic>Golgi</topic><topic>Golgi Apparatus - genetics</topic><topic>Golgi Apparatus - metabolism</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>GRINCH</topic><topic>hPro-CpepSfCerulean</topic><topic>hPro-CpepSfGFP</topic><topic>hPro-CpepSfVenus</topic><topic>Humans</topic><topic>Insulin - chemistry</topic><topic>Insulin - genetics</topic><topic>Insulin - metabolism</topic><topic>Insulin Synthesis</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Microscopy, Confocal</topic><topic>Plasmids</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Transport</topic><topic>Rats</topic><topic>Transfection</topic><topic>β Cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haataja, Leena</creatorcontrib><creatorcontrib>Snapp, Erik</creatorcontrib><creatorcontrib>Wright, Jordan</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hardy, Alexandre B.</creatorcontrib><creatorcontrib>Wheeler, Michael B.</creatorcontrib><creatorcontrib>Markwardt, Michele L.</creatorcontrib><creatorcontrib>Rizzo, Megan A.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haataja, Leena</au><au>Snapp, Erik</au><au>Wright, Jordan</au><au>Liu, Ming</au><au>Hardy, Alexandre B.</au><au>Wheeler, Michael B.</au><au>Markwardt, Michele L.</au><au>Rizzo, Megan A.</au><au>Arvan, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-01-18</date><risdate>2013</risdate><volume>288</volume><issue>3</issue><spage>1896</spage><epage>1906</epage><pages>1896-1906</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER. Background: Proinsulin assembly is linked to its intracellular transport. Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region. Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions. Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23223446</pmid><doi>10.1074/jbc.M112.420018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-01, Vol.288 (3), p.1896-1906
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548498
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Akita Proinsulin
Animals
C-Peptide - chemistry
C-Peptide - genetics
C-Peptide - metabolism
Cell Biology
Cell Line, Tumor
Chlorocebus aethiops
COS Cells
Dimerization
Endoplasmic Reticulum (ER)
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - ultrastructure
FRET
Gene Expression
Golgi
Golgi Apparatus - genetics
Golgi Apparatus - metabolism
Golgi Apparatus - ultrastructure
Green Fluorescent Proteins - chemistry
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
GRINCH
hPro-CpepSfCerulean
hPro-CpepSfGFP
hPro-CpepSfVenus
Humans
Insulin - chemistry
Insulin - genetics
Insulin - metabolism
Insulin Synthesis
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - metabolism
Kinetics
Mice
Microscopy, Confocal
Plasmids
Protein Binding
Protein Folding
Protein Transport
Rats
Transfection
β Cell
title Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proinsulin%20Intermolecular%20Interactions%20during%20Secretory%20Trafficking%20in%20Pancreatic%20%CE%B2%20Cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Haataja,%20Leena&rft.date=2013-01-18&rft.volume=288&rft.issue=3&rft.spage=1896&rft.epage=1906&rft.pages=1896-1906&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.420018&rft_dat=%3Cproquest_pubme%3E1273702887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273702887&rft_id=info:pmid/23223446&rft_els_id=S0021925820466025&rfr_iscdi=true