Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells
Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β ce...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-01, Vol.288 (3), p.1896-1906 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1906 |
---|---|
container_issue | 3 |
container_start_page | 1896 |
container_title | The Journal of biological chemistry |
container_volume | 288 |
creator | Haataja, Leena Snapp, Erik Wright, Jordan Liu, Ming Hardy, Alexandre B. Wheeler, Michael B. Markwardt, Michele L. Rizzo, Megan A. Arvan, Peter |
description | Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER.
Background: Proinsulin assembly is linked to its intracellular transport.
Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region.
Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions.
Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states. |
doi_str_mv | 10.1074/jbc.M112.420018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820466025</els_id><sourcerecordid>1273702887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</originalsourceid><addsrcrecordid>eNp1kc9O3DAQxq2qFSyUc29Vjr1k8ThOYl8qVSv-SaAiQSXExXLsCZhmbWonSLxWH4RnwqsAag_4MrLnN9-M5yPkC9Al0Jbv33VmeQbAlpxRCuIDWQAVVVnVcPWRLChlUEpWi22yk9IdzYdL2CLbrGKs4rxZkOvzGJxP0-B8ceJHjOswoJkGHeerNqMLPhV2is7fFBdoIo4hPhaXUfe9M783r7n2XPuc0aMzxdPfYoXDkD6TT70eEu69xF3y6_DgcnVcnv48Oln9OC0NF3IsLRXQdk3TA5qupbTt-ppZSi3vGgmSM1ELBG1NgxR6w2WbB7fSorV9Bx2rdsn3Wfd-6tZoDfox6kHdR7fW8VEF7dT_Ge9u1U14UFXNBZciC3x7EYjhz4RpVGuXTP6C9himpIC1VUuZEG1G92fUxJBSxP6tDVC1cURlR9TGETU7kiu-_jvdG_9qQQbkDGDe0YPDqJJx6A1aF9GMygb3rvgzQBCd5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273702887</pqid></control><display><type>article</type><title>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Haataja, Leena ; Snapp, Erik ; Wright, Jordan ; Liu, Ming ; Hardy, Alexandre B. ; Wheeler, Michael B. ; Markwardt, Michele L. ; Rizzo, Megan A. ; Arvan, Peter</creator><creatorcontrib>Haataja, Leena ; Snapp, Erik ; Wright, Jordan ; Liu, Ming ; Hardy, Alexandre B. ; Wheeler, Michael B. ; Markwardt, Michele L. ; Rizzo, Megan A. ; Arvan, Peter</creatorcontrib><description>Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER.
Background: Proinsulin assembly is linked to its intracellular transport.
Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region.
Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions.
Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.420018</identifier><identifier>PMID: 23223446</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Akita Proinsulin ; Animals ; C-Peptide - chemistry ; C-Peptide - genetics ; C-Peptide - metabolism ; Cell Biology ; Cell Line, Tumor ; Chlorocebus aethiops ; COS Cells ; Dimerization ; Endoplasmic Reticulum (ER) ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; FRET ; Gene Expression ; Golgi ; Golgi Apparatus - genetics ; Golgi Apparatus - metabolism ; Golgi Apparatus - ultrastructure ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; GRINCH ; hPro-CpepSfCerulean ; hPro-CpepSfGFP ; hPro-CpepSfVenus ; Humans ; Insulin - chemistry ; Insulin - genetics ; Insulin - metabolism ; Insulin Synthesis ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Kinetics ; Mice ; Microscopy, Confocal ; Plasmids ; Protein Binding ; Protein Folding ; Protein Transport ; Rats ; Transfection ; β Cell</subject><ispartof>The Journal of biological chemistry, 2013-01, Vol.288 (3), p.1896-1906</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</citedby><cites>FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548498/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548498/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23223446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haataja, Leena</creatorcontrib><creatorcontrib>Snapp, Erik</creatorcontrib><creatorcontrib>Wright, Jordan</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hardy, Alexandre B.</creatorcontrib><creatorcontrib>Wheeler, Michael B.</creatorcontrib><creatorcontrib>Markwardt, Michele L.</creatorcontrib><creatorcontrib>Rizzo, Megan A.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><title>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER.
Background: Proinsulin assembly is linked to its intracellular transport.
Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region.
Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions.
Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states.</description><subject>Akita Proinsulin</subject><subject>Animals</subject><subject>C-Peptide - chemistry</subject><subject>C-Peptide - genetics</subject><subject>C-Peptide - metabolism</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>Dimerization</subject><subject>Endoplasmic Reticulum (ER)</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>FRET</subject><subject>Gene Expression</subject><subject>Golgi</subject><subject>Golgi Apparatus - genetics</subject><subject>Golgi Apparatus - metabolism</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>GRINCH</subject><subject>hPro-CpepSfCerulean</subject><subject>hPro-CpepSfGFP</subject><subject>hPro-CpepSfVenus</subject><subject>Humans</subject><subject>Insulin - chemistry</subject><subject>Insulin - genetics</subject><subject>Insulin - metabolism</subject><subject>Insulin Synthesis</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Microscopy, Confocal</subject><subject>Plasmids</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Transport</subject><subject>Rats</subject><subject>Transfection</subject><subject>β Cell</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9O3DAQxq2qFSyUc29Vjr1k8ThOYl8qVSv-SaAiQSXExXLsCZhmbWonSLxWH4RnwqsAag_4MrLnN9-M5yPkC9Al0Jbv33VmeQbAlpxRCuIDWQAVVVnVcPWRLChlUEpWi22yk9IdzYdL2CLbrGKs4rxZkOvzGJxP0-B8ceJHjOswoJkGHeerNqMLPhV2is7fFBdoIo4hPhaXUfe9M783r7n2XPuc0aMzxdPfYoXDkD6TT70eEu69xF3y6_DgcnVcnv48Oln9OC0NF3IsLRXQdk3TA5qupbTt-ppZSi3vGgmSM1ELBG1NgxR6w2WbB7fSorV9Bx2rdsn3Wfd-6tZoDfox6kHdR7fW8VEF7dT_Ge9u1U14UFXNBZciC3x7EYjhz4RpVGuXTP6C9himpIC1VUuZEG1G92fUxJBSxP6tDVC1cURlR9TGETU7kiu-_jvdG_9qQQbkDGDe0YPDqJJx6A1aF9GMygb3rvgzQBCd5w</recordid><startdate>20130118</startdate><enddate>20130118</enddate><creator>Haataja, Leena</creator><creator>Snapp, Erik</creator><creator>Wright, Jordan</creator><creator>Liu, Ming</creator><creator>Hardy, Alexandre B.</creator><creator>Wheeler, Michael B.</creator><creator>Markwardt, Michele L.</creator><creator>Rizzo, Megan A.</creator><creator>Arvan, Peter</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130118</creationdate><title>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</title><author>Haataja, Leena ; Snapp, Erik ; Wright, Jordan ; Liu, Ming ; Hardy, Alexandre B. ; Wheeler, Michael B. ; Markwardt, Michele L. ; Rizzo, Megan A. ; Arvan, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-d0817b66f1ecb7007bf52d00d4b691942858e1adc6e01fc497446d9deddfb1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Akita Proinsulin</topic><topic>Animals</topic><topic>C-Peptide - chemistry</topic><topic>C-Peptide - genetics</topic><topic>C-Peptide - metabolism</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>Dimerization</topic><topic>Endoplasmic Reticulum (ER)</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>FRET</topic><topic>Gene Expression</topic><topic>Golgi</topic><topic>Golgi Apparatus - genetics</topic><topic>Golgi Apparatus - metabolism</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>GRINCH</topic><topic>hPro-CpepSfCerulean</topic><topic>hPro-CpepSfGFP</topic><topic>hPro-CpepSfVenus</topic><topic>Humans</topic><topic>Insulin - chemistry</topic><topic>Insulin - genetics</topic><topic>Insulin - metabolism</topic><topic>Insulin Synthesis</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Microscopy, Confocal</topic><topic>Plasmids</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Transport</topic><topic>Rats</topic><topic>Transfection</topic><topic>β Cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haataja, Leena</creatorcontrib><creatorcontrib>Snapp, Erik</creatorcontrib><creatorcontrib>Wright, Jordan</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hardy, Alexandre B.</creatorcontrib><creatorcontrib>Wheeler, Michael B.</creatorcontrib><creatorcontrib>Markwardt, Michele L.</creatorcontrib><creatorcontrib>Rizzo, Megan A.</creatorcontrib><creatorcontrib>Arvan, Peter</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haataja, Leena</au><au>Snapp, Erik</au><au>Wright, Jordan</au><au>Liu, Ming</au><au>Hardy, Alexandre B.</au><au>Wheeler, Michael B.</au><au>Markwardt, Michele L.</au><au>Rizzo, Megan A.</au><au>Arvan, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-01-18</date><risdate>2013</risdate><volume>288</volume><issue>3</issue><spage>1896</spage><epage>1906</epage><pages>1896-1906</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited “hPro-CpepSfGFP,” a human proinsulin bearing “superfolder” green fluorescent C-peptide expressed in pancreatic β cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with β cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in β cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER.
Background: Proinsulin assembly is linked to its intracellular transport.
Results: Proinsulin self-associates in the endoplasmic reticulum but, surprisingly, accumulates at a rate-limiting transport step in the Golgi region.
Conclusion: Proinsulin transport is a dynamic process, and its perturbation may be measured under steady-state conditions.
Significance: Proinsulin distribution may be a useful tool to characterize proinsulin trafficking in disease states.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23223446</pmid><doi>10.1074/jbc.M112.420018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2013-01, Vol.288 (3), p.1896-1906 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548498 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Akita Proinsulin Animals C-Peptide - chemistry C-Peptide - genetics C-Peptide - metabolism Cell Biology Cell Line, Tumor Chlorocebus aethiops COS Cells Dimerization Endoplasmic Reticulum (ER) Endoplasmic Reticulum - genetics Endoplasmic Reticulum - metabolism Endoplasmic Reticulum - ultrastructure FRET Gene Expression Golgi Golgi Apparatus - genetics Golgi Apparatus - metabolism Golgi Apparatus - ultrastructure Green Fluorescent Proteins - chemistry Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism GRINCH hPro-CpepSfCerulean hPro-CpepSfGFP hPro-CpepSfVenus Humans Insulin - chemistry Insulin - genetics Insulin - metabolism Insulin Synthesis Insulin-Secreting Cells - cytology Insulin-Secreting Cells - metabolism Kinetics Mice Microscopy, Confocal Plasmids Protein Binding Protein Folding Protein Transport Rats Transfection β Cell |
title | Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proinsulin%20Intermolecular%20Interactions%20during%20Secretory%20Trafficking%20in%20Pancreatic%20%CE%B2%20Cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Haataja,%20Leena&rft.date=2013-01-18&rft.volume=288&rft.issue=3&rft.spage=1896&rft.epage=1906&rft.pages=1896-1906&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.420018&rft_dat=%3Cproquest_pubme%3E1273702887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273702887&rft_id=info:pmid/23223446&rft_els_id=S0021925820466025&rfr_iscdi=true |