Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment

Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signalin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 2013-01, Vol.304 (2), p.E222-E228
Hauptverfasser: Dong, Zhenhua, Chai, Weidong, Wang, Wenhui, Zhao, Lina, Fu, Zhuo, Cao, Wenhong, Liu, Zhenqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E228
container_issue 2
container_start_page E222
container_title American journal of physiology: endocrinology and metabolism
container_volume 304
creator Dong, Zhenhua
Chai, Weidong
Wang, Wenhui
Zhao, Lina
Fu, Zhuo
Cao, Wenhong
Liu, Zhenqi
description Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser(1177) and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes.
doi_str_mv 10.1152/ajpendo.00473.2012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3543568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273576522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-a569aa9896cf313aaf55b8b5cc129c256f40a4ee448964c11c809e7f697838e83</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhD3BAlrhwydafSXxBqioKSJXKAc6W15ks3iZ28McK_j1Ou1TAydLMM6_nnReh15RsKZXswhwW8EPYEiI6vmWEsidoUxusoVLKp2hDqOIN7YU6Qy9SOhBCOinYc3TGeO0QKTbo-CWGDM7jO-dNAnyJZxicyZDwfirW7INvJncHeIEluwEwbZwfioUBe5ejszj8XMtLDLWaXfDY-AHPJdkJ8OxsDEeTbJlMxBFsLC7P4PNL9Gw0U4JXp_ccfbv-8PXqU3Nz-_Hz1eVNY4Vqc2Nkq4xRvWrtyCk3ZpRy1--ktZQpy2Q7CmIEgBAVEZZS2xMF3diqruc99PwcvX_QXcquGrP162gmvUQ3m_hLB-P0vx3vvut9OGouBZftKvDuJBDDjwIp69klC9NkPISSNGUdl11bj17Rt_-hh1Cir_ZWikjJKFeVYg9UvUxKEcbHZSjRa6z6FKu-j1WvsdahN3_beBz5kyP_DT_Golk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270552139</pqid></control><display><type>article</type><title>Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Dong, Zhenhua ; Chai, Weidong ; Wang, Wenhui ; Zhao, Lina ; Fu, Zhuo ; Cao, Wenhong ; Liu, Zhenqi</creator><creatorcontrib>Dong, Zhenhua ; Chai, Weidong ; Wang, Wenhui ; Zhao, Lina ; Fu, Zhuo ; Cao, Wenhong ; Liu, Zhenqi</creatorcontrib><description>Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser(1177) and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes.</description><identifier>ISSN: 0193-1849</identifier><identifier>EISSN: 1522-1555</identifier><identifier>DOI: 10.1152/ajpendo.00473.2012</identifier><identifier>PMID: 23193054</identifier><identifier>CODEN: AJPMD9</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Blood pressure ; Blood Pressure - drug effects ; Blood Pressure - physiology ; Cattle ; Cells, Cultured ; Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Cyclic AMP-Dependent Protein Kinases - physiology ; Glucagon-Like Peptide 1 - pharmacology ; Glucagon-Like Peptide 1 - physiology ; Glucose ; Insulin ; Insulin - blood ; Kinases ; Male ; Microvessels - drug effects ; Microvessels - physiology ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Muscular system ; Nitric oxide ; Nitric Oxide - metabolism ; Peptides ; Protein Kinase Inhibitors - pharmacology ; Rats ; Rats, Sprague-Dawley ; Regional Blood Flow - drug effects</subject><ispartof>American journal of physiology: endocrinology and metabolism, 2013-01, Vol.304 (2), p.E222-E228</ispartof><rights>Copyright American Physiological Society Jan 15, 2013</rights><rights>Copyright © 2013 the American Physiological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-a569aa9896cf313aaf55b8b5cc129c256f40a4ee448964c11c809e7f697838e83</citedby><cites>FETCH-LOGICAL-c496t-a569aa9896cf313aaf55b8b5cc129c256f40a4ee448964c11c809e7f697838e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,3027,27906,27907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23193054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Zhenhua</creatorcontrib><creatorcontrib>Chai, Weidong</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Zhao, Lina</creatorcontrib><creatorcontrib>Fu, Zhuo</creatorcontrib><creatorcontrib>Cao, Wenhong</creatorcontrib><creatorcontrib>Liu, Zhenqi</creatorcontrib><title>Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment</title><title>American journal of physiology: endocrinology and metabolism</title><addtitle>Am J Physiol Endocrinol Metab</addtitle><description>Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser(1177) and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes.</description><subject>Animals</subject><subject>Blood pressure</subject><subject>Blood Pressure - drug effects</subject><subject>Blood Pressure - physiology</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - physiology</subject><subject>Glucagon-Like Peptide 1 - pharmacology</subject><subject>Glucagon-Like Peptide 1 - physiology</subject><subject>Glucose</subject><subject>Insulin</subject><subject>Insulin - blood</subject><subject>Kinases</subject><subject>Male</subject><subject>Microvessels - drug effects</subject><subject>Microvessels - physiology</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular system</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Peptides</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regional Blood Flow - drug effects</subject><issn>0193-1849</issn><issn>1522-1555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhD3BAlrhwydafSXxBqioKSJXKAc6W15ks3iZ28McK_j1Ou1TAydLMM6_nnReh15RsKZXswhwW8EPYEiI6vmWEsidoUxusoVLKp2hDqOIN7YU6Qy9SOhBCOinYc3TGeO0QKTbo-CWGDM7jO-dNAnyJZxicyZDwfirW7INvJncHeIEluwEwbZwfioUBe5ejszj8XMtLDLWaXfDY-AHPJdkJ8OxsDEeTbJlMxBFsLC7P4PNL9Gw0U4JXp_ccfbv-8PXqU3Nz-_Hz1eVNY4Vqc2Nkq4xRvWrtyCk3ZpRy1--ktZQpy2Q7CmIEgBAVEZZS2xMF3diqruc99PwcvX_QXcquGrP162gmvUQ3m_hLB-P0vx3vvut9OGouBZftKvDuJBDDjwIp69klC9NkPISSNGUdl11bj17Rt_-hh1Cir_ZWikjJKFeVYg9UvUxKEcbHZSjRa6z6FKu-j1WvsdahN3_beBz5kyP_DT_Golk</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Dong, Zhenhua</creator><creator>Chai, Weidong</creator><creator>Wang, Wenhui</creator><creator>Zhao, Lina</creator><creator>Fu, Zhuo</creator><creator>Cao, Wenhong</creator><creator>Liu, Zhenqi</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130115</creationdate><title>Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment</title><author>Dong, Zhenhua ; Chai, Weidong ; Wang, Wenhui ; Zhao, Lina ; Fu, Zhuo ; Cao, Wenhong ; Liu, Zhenqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-a569aa9896cf313aaf55b8b5cc129c256f40a4ee448964c11c809e7f697838e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Blood pressure</topic><topic>Blood Pressure - drug effects</topic><topic>Blood Pressure - physiology</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - physiology</topic><topic>Glucagon-Like Peptide 1 - pharmacology</topic><topic>Glucagon-Like Peptide 1 - physiology</topic><topic>Glucose</topic><topic>Insulin</topic><topic>Insulin - blood</topic><topic>Kinases</topic><topic>Male</topic><topic>Microvessels - drug effects</topic><topic>Microvessels - physiology</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular system</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Peptides</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regional Blood Flow - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Zhenhua</creatorcontrib><creatorcontrib>Chai, Weidong</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Zhao, Lina</creatorcontrib><creatorcontrib>Fu, Zhuo</creatorcontrib><creatorcontrib>Cao, Wenhong</creatorcontrib><creatorcontrib>Liu, Zhenqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology: endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Zhenhua</au><au>Chai, Weidong</au><au>Wang, Wenhui</au><au>Zhao, Lina</au><au>Fu, Zhuo</au><au>Cao, Wenhong</au><au>Liu, Zhenqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment</atitle><jtitle>American journal of physiology: endocrinology and metabolism</jtitle><addtitle>Am J Physiol Endocrinol Metab</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>304</volume><issue>2</issue><spage>E222</spage><epage>E228</epage><pages>E222-E228</pages><issn>0193-1849</issn><eissn>1522-1555</eissn><coden>AJPMD9</coden><abstract>Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser(1177) and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>23193054</pmid><doi>10.1152/ajpendo.00473.2012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0193-1849
ispartof American journal of physiology: endocrinology and metabolism, 2013-01, Vol.304 (2), p.E222-E228
issn 0193-1849
1522-1555
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3543568
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Blood pressure
Blood Pressure - drug effects
Blood Pressure - physiology
Cattle
Cells, Cultured
Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors
Cyclic AMP-Dependent Protein Kinases - metabolism
Cyclic AMP-Dependent Protein Kinases - physiology
Glucagon-Like Peptide 1 - pharmacology
Glucagon-Like Peptide 1 - physiology
Glucose
Insulin
Insulin - blood
Kinases
Male
Microvessels - drug effects
Microvessels - physiology
Muscle, Skeletal - blood supply
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscular system
Nitric oxide
Nitric Oxide - metabolism
Peptides
Protein Kinase Inhibitors - pharmacology
Rats
Rats, Sprague-Dawley
Regional Blood Flow - drug effects
title Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20kinase%20A%20mediates%20glucagon-like%20peptide%201-induced%20nitric%20oxide%20production%20and%20muscle%20microvascular%20recruitment&rft.jtitle=American%20journal%20of%20physiology:%20endocrinology%20and%20metabolism&rft.au=Dong,%20Zhenhua&rft.date=2013-01-15&rft.volume=304&rft.issue=2&rft.spage=E222&rft.epage=E228&rft.pages=E222-E228&rft.issn=0193-1849&rft.eissn=1522-1555&rft.coden=AJPMD9&rft_id=info:doi/10.1152/ajpendo.00473.2012&rft_dat=%3Cproquest_pubme%3E1273576522%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270552139&rft_id=info:pmid/23193054&rfr_iscdi=true