Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised

The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the β' jaw domain, which is part of the DNA binding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2012-11, Vol.158 (Pt 11), p.2753-2764
Hauptverfasser: SHADRIN, Andrey, SHEPPARD, Carol, SEVERINOV, Konstantin, MATTHEWS, Steve, WIGNESHWERARAJ, Sivaramesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2764
container_issue Pt 11
container_start_page 2753
container_title Microbiology (Society for General Microbiology)
container_volume 158
creator SHADRIN, Andrey
SHEPPARD, Carol
SEVERINOV, Konstantin
MATTHEWS, Steve
WIGNESHWERARAJ, Sivaramesh
description The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the β' jaw domain, which is part of the DNA binding channel. The binding of Gp2 to the β' jaw antagonizes several steps associated with interactions between the RNAp and promoter DNA, leading to inhibition of transcription at the open promoter complex formation step. In the structure of the complex formed between Gp2 and a fragment of the β' jaw, amino acid residues in the β3 strand of Gp2 contribute to the primary interaction interface with the β' jaw. The 7009 E. coli strain is resistant to T7 because it carries a charge reversal point mutation in the β' jaw that prevents Gp2 binding. However, a T7 phage encoding a mutant form of Gp2, called Gp2(β), which carries triple amino acid substitutions E24K, F27Y and R56C, can productively infect this strain. By studying the molecular basis of inhibition of RNAp from the 7009 strain by Gp2(β), we provide several lines of evidence that the E24K and F27Y substitutions facilitate an interaction with RNAp when the primary interaction interface with the β' jaw is compromised. The proposed additional interaction interface between RNAp and Gp2 may contribute to the multipronged mechanism of transcription inhibition by Gp2.
doi_str_mv 10.1099/mic.0.062547-0
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3541766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22977089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-98715229e925efc6119dc7c198270852e740f1edd4e5aaaa025413b37f7b68e33</originalsourceid><addsrcrecordid>eNpdUU1v1DAQtRCIlsKVI_KFY5ax8-H4glRVpSBVIEE5W44zIUZJHNnervoH-V1Md7flwxeP_N6855nH2GsBGwFav5u928AGGllXqoAn7FRUTV1IaOEp1WUNBbRKnrAXKf0EIBDEc3YipVYKWn3Kfn3bdin7vM0-LIn7hecR-WVyI0bvRm-5C5PnXz-f8zVMdzNGm5Boo-98DpHfKH61SmqymdtpCrsHjOR4GHiOdkku-nX_sBvxYLBGP9t4R-RMim4P7uvBOuQd5h0S817ZLv3_7h26MGOin81rDLNP2L9kzwY7JXx1vM_Y9w-XNxcfi-svV58uzq8LV0nIhW6VqGl41LLGwTVC6N4pJ3QraR21RFXBILDvK6wtHaC1irIr1aC6psWyPGPvD7rrtpuxd7jQgJM5jmOC9eZfZPGj-RFuTUlCqmlIYHMQcDGkFHF47BVg7hM1lKgBc0jUADW8-dvxkf4QIRHeHgk2OTsNtHDn0x9eU7dagix_A0EAr58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised</title><source>MEDLINE</source><source>PubMed Central</source><creator>SHADRIN, Andrey ; SHEPPARD, Carol ; SEVERINOV, Konstantin ; MATTHEWS, Steve ; WIGNESHWERARAJ, Sivaramesh</creator><creatorcontrib>SHADRIN, Andrey ; SHEPPARD, Carol ; SEVERINOV, Konstantin ; MATTHEWS, Steve ; WIGNESHWERARAJ, Sivaramesh</creatorcontrib><description>The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the β' jaw domain, which is part of the DNA binding channel. The binding of Gp2 to the β' jaw antagonizes several steps associated with interactions between the RNAp and promoter DNA, leading to inhibition of transcription at the open promoter complex formation step. In the structure of the complex formed between Gp2 and a fragment of the β' jaw, amino acid residues in the β3 strand of Gp2 contribute to the primary interaction interface with the β' jaw. The 7009 E. coli strain is resistant to T7 because it carries a charge reversal point mutation in the β' jaw that prevents Gp2 binding. However, a T7 phage encoding a mutant form of Gp2, called Gp2(β), which carries triple amino acid substitutions E24K, F27Y and R56C, can productively infect this strain. By studying the molecular basis of inhibition of RNAp from the 7009 strain by Gp2(β), we provide several lines of evidence that the E24K and F27Y substitutions facilitate an interaction with RNAp when the primary interaction interface with the β' jaw is compromised. The proposed additional interaction interface between RNAp and Gp2 may contribute to the multipronged mechanism of transcription inhibition by Gp2.</description><identifier>ISSN: 1350-0872</identifier><identifier>EISSN: 1465-2080</identifier><identifier>DOI: 10.1099/mic.0.062547-0</identifier><identifier>PMID: 22977089</identifier><language>eng</language><publisher>Reading: Society for General Microbiology</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Bacteriophage T7 - chemistry ; Bacteriophage T7 - genetics ; Bacteriophage T7 - metabolism ; Binding Sites ; Cell and Molecular Biology of Microbes ; DNA-Directed RNA Polymerases - antagonists &amp; inhibitors ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Down-Regulation ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - metabolism ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - antagonists &amp; inhibitors ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Molecular Sequence Data ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Sequence Alignment ; Transcription, Genetic ; Viral Proteins</subject><ispartof>Microbiology (Society for General Microbiology), 2012-11, Vol.158 (Pt 11), p.2753-2764</ispartof><rights>2015 INIST-CNRS</rights><rights>2012 SGM</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-98715229e925efc6119dc7c198270852e740f1edd4e5aaaa025413b37f7b68e33</citedby><cites>FETCH-LOGICAL-c420t-98715229e925efc6119dc7c198270852e740f1edd4e5aaaa025413b37f7b68e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541766/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541766/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26589202$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22977089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SHADRIN, Andrey</creatorcontrib><creatorcontrib>SHEPPARD, Carol</creatorcontrib><creatorcontrib>SEVERINOV, Konstantin</creatorcontrib><creatorcontrib>MATTHEWS, Steve</creatorcontrib><creatorcontrib>WIGNESHWERARAJ, Sivaramesh</creatorcontrib><title>Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised</title><title>Microbiology (Society for General Microbiology)</title><addtitle>Microbiology (Reading)</addtitle><description>The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the β' jaw domain, which is part of the DNA binding channel. The binding of Gp2 to the β' jaw antagonizes several steps associated with interactions between the RNAp and promoter DNA, leading to inhibition of transcription at the open promoter complex formation step. In the structure of the complex formed between Gp2 and a fragment of the β' jaw, amino acid residues in the β3 strand of Gp2 contribute to the primary interaction interface with the β' jaw. The 7009 E. coli strain is resistant to T7 because it carries a charge reversal point mutation in the β' jaw that prevents Gp2 binding. However, a T7 phage encoding a mutant form of Gp2, called Gp2(β), which carries triple amino acid substitutions E24K, F27Y and R56C, can productively infect this strain. By studying the molecular basis of inhibition of RNAp from the 7009 strain by Gp2(β), we provide several lines of evidence that the E24K and F27Y substitutions facilitate an interaction with RNAp when the primary interaction interface with the β' jaw is compromised. The proposed additional interaction interface between RNAp and Gp2 may contribute to the multipronged mechanism of transcription inhibition by Gp2.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Bacteriophage T7 - chemistry</subject><subject>Bacteriophage T7 - genetics</subject><subject>Bacteriophage T7 - metabolism</subject><subject>Binding Sites</subject><subject>Cell and Molecular Biology of Microbes</subject><subject>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Down-Regulation</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - antagonists &amp; inhibitors</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Transcription, Genetic</subject><subject>Viral Proteins</subject><issn>1350-0872</issn><issn>1465-2080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU1v1DAQtRCIlsKVI_KFY5ax8-H4glRVpSBVIEE5W44zIUZJHNnervoH-V1Md7flwxeP_N6855nH2GsBGwFav5u928AGGllXqoAn7FRUTV1IaOEp1WUNBbRKnrAXKf0EIBDEc3YipVYKWn3Kfn3bdin7vM0-LIn7hecR-WVyI0bvRm-5C5PnXz-f8zVMdzNGm5Boo-98DpHfKH61SmqymdtpCrsHjOR4GHiOdkku-nX_sBvxYLBGP9t4R-RMim4P7uvBOuQd5h0S817ZLv3_7h26MGOin81rDLNP2L9kzwY7JXx1vM_Y9w-XNxcfi-svV58uzq8LV0nIhW6VqGl41LLGwTVC6N4pJ3QraR21RFXBILDvK6wtHaC1irIr1aC6psWyPGPvD7rrtpuxd7jQgJM5jmOC9eZfZPGj-RFuTUlCqmlIYHMQcDGkFHF47BVg7hM1lKgBc0jUADW8-dvxkf4QIRHeHgk2OTsNtHDn0x9eU7dagix_A0EAr58</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>SHADRIN, Andrey</creator><creator>SHEPPARD, Carol</creator><creator>SEVERINOV, Konstantin</creator><creator>MATTHEWS, Steve</creator><creator>WIGNESHWERARAJ, Sivaramesh</creator><general>Society for General Microbiology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20121101</creationdate><title>Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised</title><author>SHADRIN, Andrey ; SHEPPARD, Carol ; SEVERINOV, Konstantin ; MATTHEWS, Steve ; WIGNESHWERARAJ, Sivaramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-98715229e925efc6119dc7c198270852e740f1edd4e5aaaa025413b37f7b68e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Bacteriophage T7 - chemistry</topic><topic>Bacteriophage T7 - genetics</topic><topic>Bacteriophage T7 - metabolism</topic><topic>Binding Sites</topic><topic>Cell and Molecular Biology of Microbes</topic><topic>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Down-Regulation</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - antagonists &amp; inhibitors</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Transcription, Genetic</topic><topic>Viral Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHADRIN, Andrey</creatorcontrib><creatorcontrib>SHEPPARD, Carol</creatorcontrib><creatorcontrib>SEVERINOV, Konstantin</creatorcontrib><creatorcontrib>MATTHEWS, Steve</creatorcontrib><creatorcontrib>WIGNESHWERARAJ, Sivaramesh</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbiology (Society for General Microbiology)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHADRIN, Andrey</au><au>SHEPPARD, Carol</au><au>SEVERINOV, Konstantin</au><au>MATTHEWS, Steve</au><au>WIGNESHWERARAJ, Sivaramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised</atitle><jtitle>Microbiology (Society for General Microbiology)</jtitle><addtitle>Microbiology (Reading)</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>158</volume><issue>Pt 11</issue><spage>2753</spage><epage>2764</epage><pages>2753-2764</pages><issn>1350-0872</issn><eissn>1465-2080</eissn><abstract>The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the β' jaw domain, which is part of the DNA binding channel. The binding of Gp2 to the β' jaw antagonizes several steps associated with interactions between the RNAp and promoter DNA, leading to inhibition of transcription at the open promoter complex formation step. In the structure of the complex formed between Gp2 and a fragment of the β' jaw, amino acid residues in the β3 strand of Gp2 contribute to the primary interaction interface with the β' jaw. The 7009 E. coli strain is resistant to T7 because it carries a charge reversal point mutation in the β' jaw that prevents Gp2 binding. However, a T7 phage encoding a mutant form of Gp2, called Gp2(β), which carries triple amino acid substitutions E24K, F27Y and R56C, can productively infect this strain. By studying the molecular basis of inhibition of RNAp from the 7009 strain by Gp2(β), we provide several lines of evidence that the E24K and F27Y substitutions facilitate an interaction with RNAp when the primary interaction interface with the β' jaw is compromised. The proposed additional interaction interface between RNAp and Gp2 may contribute to the multipronged mechanism of transcription inhibition by Gp2.</abstract><cop>Reading</cop><pub>Society for General Microbiology</pub><pmid>22977089</pmid><doi>10.1099/mic.0.062547-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-0872
ispartof Microbiology (Society for General Microbiology), 2012-11, Vol.158 (Pt 11), p.2753-2764
issn 1350-0872
1465-2080
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3541766
source MEDLINE; PubMed Central
subjects Amino Acid Sequence
Amino Acid Substitution
Bacteriophage T7 - chemistry
Bacteriophage T7 - genetics
Bacteriophage T7 - metabolism
Binding Sites
Cell and Molecular Biology of Microbes
DNA-Directed RNA Polymerases - antagonists & inhibitors
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
Down-Regulation
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - metabolism
Escherichia coli - chemistry
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - antagonists & inhibitors
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Molecular Sequence Data
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Sequence Alignment
Transcription, Genetic
Viral Proteins
title Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitutions%20in%20the%20Escherichia%20coli%20RNA%20polymerase%20inhibitor%20T7%20Gp2%20that%20allow%20inhibition%20of%20transcription%20when%20the%20primary%20interaction%20interface%20between%20Gp2%20and%20RNA%20polymerase%20becomes%20compromised&rft.jtitle=Microbiology%20(Society%20for%20General%20Microbiology)&rft.au=SHADRIN,%20Andrey&rft.date=2012-11-01&rft.volume=158&rft.issue=Pt%2011&rft.spage=2753&rft.epage=2764&rft.pages=2753-2764&rft.issn=1350-0872&rft.eissn=1465-2080&rft_id=info:doi/10.1099/mic.0.062547-0&rft_dat=%3Cpubmed_cross%3E22977089%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22977089&rfr_iscdi=true