Impact of selective mapping strategies on automated laboratory result notification to public health authorities
Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resourc...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2012, Vol.2012, p.228-236 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | |
container_start_page | 228 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2012 |
creator | Gamache, Roland E Dixon, Brian E Grannis, Shaun Vreeman, Daniel J |
description | Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273380514</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-1bd0998f82fafa1171dd5758a355d1cb8a7d37ffc0f83afe22db7bcabb7047923</originalsourceid><addsrcrecordid>eNpVUMtKxDAULYI44-gvSJZuCnk0k3YjyOBjYMCNrsvNaxpJm9qkA_P3RhxFV5fLOfc87lmxJJw3ZYXFelFcxviOcSV4vb4oFpQxXNGGLouw7UdQCQWLovFGJXcwqIdxdMMexTRBMntnIgoDgjmFPu8aeZAhI2E6osnE2Sc0hOSsU5BcJqaAxll6p1BnwKfu67ILk0tZ6Ko4t-CjuT7NVfH2-PC6eS53L0_bzf2uHElNUkmkxk1T25pasECIIFrzHB4Y55ooWYPQTFirsK0ZWEOplkIqkFLkkg1lq-LuWzcn6Y1WZshdfDtOrofp2AZw7X9kcF27D4eW8QpXDc4CtyeBKXzMJqa2d1EZ72EwYY4toYKxGnNSZerNX69fk58vs083ZH0O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273380514</pqid></control><display><type>article</type><title>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gamache, Roland E ; Dixon, Brian E ; Grannis, Shaun ; Vreeman, Daniel J</creator><creatorcontrib>Gamache, Roland E ; Dixon, Brian E ; Grannis, Shaun ; Vreeman, Daniel J</creatorcontrib><description>Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 23304292</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Automatic Data Processing ; Clinical Laboratory Information Systems - standards ; Computer Communication Networks ; Humans ; Indiana ; Logical Observation Identifiers Names and Codes ; Mandatory Reporting ; Public Health Administration</subject><ispartof>AMIA ... Annual Symposium proceedings, 2012, Vol.2012, p.228-236</ispartof><rights>2012 AMIA - All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540490/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540490/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23304292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gamache, Roland E</creatorcontrib><creatorcontrib>Dixon, Brian E</creatorcontrib><creatorcontrib>Grannis, Shaun</creatorcontrib><creatorcontrib>Vreeman, Daniel J</creatorcontrib><title>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting.</description><subject>Automatic Data Processing</subject><subject>Clinical Laboratory Information Systems - standards</subject><subject>Computer Communication Networks</subject><subject>Humans</subject><subject>Indiana</subject><subject>Logical Observation Identifiers Names and Codes</subject><subject>Mandatory Reporting</subject><subject>Public Health Administration</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUMtKxDAULYI44-gvSJZuCnk0k3YjyOBjYMCNrsvNaxpJm9qkA_P3RhxFV5fLOfc87lmxJJw3ZYXFelFcxviOcSV4vb4oFpQxXNGGLouw7UdQCQWLovFGJXcwqIdxdMMexTRBMntnIgoDgjmFPu8aeZAhI2E6osnE2Sc0hOSsU5BcJqaAxll6p1BnwKfu67ILk0tZ6Ko4t-CjuT7NVfH2-PC6eS53L0_bzf2uHElNUkmkxk1T25pasECIIFrzHB4Y55ooWYPQTFirsK0ZWEOplkIqkFLkkg1lq-LuWzcn6Y1WZshdfDtOrofp2AZw7X9kcF27D4eW8QpXDc4CtyeBKXzMJqa2d1EZ72EwYY4toYKxGnNSZerNX69fk58vs083ZH0O</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Gamache, Roland E</creator><creator>Dixon, Brian E</creator><creator>Grannis, Shaun</creator><creator>Vreeman, Daniel J</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2012</creationdate><title>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</title><author>Gamache, Roland E ; Dixon, Brian E ; Grannis, Shaun ; Vreeman, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-1bd0998f82fafa1171dd5758a355d1cb8a7d37ffc0f83afe22db7bcabb7047923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automatic Data Processing</topic><topic>Clinical Laboratory Information Systems - standards</topic><topic>Computer Communication Networks</topic><topic>Humans</topic><topic>Indiana</topic><topic>Logical Observation Identifiers Names and Codes</topic><topic>Mandatory Reporting</topic><topic>Public Health Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamache, Roland E</creatorcontrib><creatorcontrib>Dixon, Brian E</creatorcontrib><creatorcontrib>Grannis, Shaun</creatorcontrib><creatorcontrib>Vreeman, Daniel J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamache, Roland E</au><au>Dixon, Brian E</au><au>Grannis, Shaun</au><au>Vreeman, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2012</date><risdate>2012</risdate><volume>2012</volume><spage>228</spage><epage>236</epage><pages>228-236</pages><eissn>1559-4076</eissn><abstract>Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>23304292</pmid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2012, Vol.2012, p.228-236 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540490 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Automatic Data Processing Clinical Laboratory Information Systems - standards Computer Communication Networks Humans Indiana Logical Observation Identifiers Names and Codes Mandatory Reporting Public Health Administration |
title | Impact of selective mapping strategies on automated laboratory result notification to public health authorities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20selective%20mapping%20strategies%20on%20automated%20laboratory%20result%20notification%20to%20public%20health%20authorities&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Gamache,%20Roland%20E&rft.date=2012&rft.volume=2012&rft.spage=228&rft.epage=236&rft.pages=228-236&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1273380514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273380514&rft_id=info:pmid/23304292&rfr_iscdi=true |