Impact of selective mapping strategies on automated laboratory result notification to public health authorities

Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2012, Vol.2012, p.228-236
Hauptverfasser: Gamache, Roland E, Dixon, Brian E, Grannis, Shaun, Vreeman, Daniel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue
container_start_page 228
container_title AMIA ... Annual Symposium proceedings
container_volume 2012
creator Gamache, Roland E
Dixon, Brian E
Grannis, Shaun
Vreeman, Daniel J
description Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273380514</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-1bd0998f82fafa1171dd5758a355d1cb8a7d37ffc0f83afe22db7bcabb7047923</originalsourceid><addsrcrecordid>eNpVUMtKxDAULYI44-gvSJZuCnk0k3YjyOBjYMCNrsvNaxpJm9qkA_P3RhxFV5fLOfc87lmxJJw3ZYXFelFcxviOcSV4vb4oFpQxXNGGLouw7UdQCQWLovFGJXcwqIdxdMMexTRBMntnIgoDgjmFPu8aeZAhI2E6osnE2Sc0hOSsU5BcJqaAxll6p1BnwKfu67ILk0tZ6Ko4t-CjuT7NVfH2-PC6eS53L0_bzf2uHElNUkmkxk1T25pasECIIFrzHB4Y55ooWYPQTFirsK0ZWEOplkIqkFLkkg1lq-LuWzcn6Y1WZshdfDtOrofp2AZw7X9kcF27D4eW8QpXDc4CtyeBKXzMJqa2d1EZ72EwYY4toYKxGnNSZerNX69fk58vs083ZH0O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273380514</pqid></control><display><type>article</type><title>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gamache, Roland E ; Dixon, Brian E ; Grannis, Shaun ; Vreeman, Daniel J</creator><creatorcontrib>Gamache, Roland E ; Dixon, Brian E ; Grannis, Shaun ; Vreeman, Daniel J</creatorcontrib><description>Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 23304292</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Automatic Data Processing ; Clinical Laboratory Information Systems - standards ; Computer Communication Networks ; Humans ; Indiana ; Logical Observation Identifiers Names and Codes ; Mandatory Reporting ; Public Health Administration</subject><ispartof>AMIA ... Annual Symposium proceedings, 2012, Vol.2012, p.228-236</ispartof><rights>2012 AMIA - All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540490/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540490/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23304292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gamache, Roland E</creatorcontrib><creatorcontrib>Dixon, Brian E</creatorcontrib><creatorcontrib>Grannis, Shaun</creatorcontrib><creatorcontrib>Vreeman, Daniel J</creatorcontrib><title>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting.</description><subject>Automatic Data Processing</subject><subject>Clinical Laboratory Information Systems - standards</subject><subject>Computer Communication Networks</subject><subject>Humans</subject><subject>Indiana</subject><subject>Logical Observation Identifiers Names and Codes</subject><subject>Mandatory Reporting</subject><subject>Public Health Administration</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUMtKxDAULYI44-gvSJZuCnk0k3YjyOBjYMCNrsvNaxpJm9qkA_P3RhxFV5fLOfc87lmxJJw3ZYXFelFcxviOcSV4vb4oFpQxXNGGLouw7UdQCQWLovFGJXcwqIdxdMMexTRBMntnIgoDgjmFPu8aeZAhI2E6osnE2Sc0hOSsU5BcJqaAxll6p1BnwKfu67ILk0tZ6Ko4t-CjuT7NVfH2-PC6eS53L0_bzf2uHElNUkmkxk1T25pasECIIFrzHB4Y55ooWYPQTFirsK0ZWEOplkIqkFLkkg1lq-LuWzcn6Y1WZshdfDtOrofp2AZw7X9kcF27D4eW8QpXDc4CtyeBKXzMJqa2d1EZ72EwYY4toYKxGnNSZerNX69fk58vs083ZH0O</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Gamache, Roland E</creator><creator>Dixon, Brian E</creator><creator>Grannis, Shaun</creator><creator>Vreeman, Daniel J</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2012</creationdate><title>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</title><author>Gamache, Roland E ; Dixon, Brian E ; Grannis, Shaun ; Vreeman, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-1bd0998f82fafa1171dd5758a355d1cb8a7d37ffc0f83afe22db7bcabb7047923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automatic Data Processing</topic><topic>Clinical Laboratory Information Systems - standards</topic><topic>Computer Communication Networks</topic><topic>Humans</topic><topic>Indiana</topic><topic>Logical Observation Identifiers Names and Codes</topic><topic>Mandatory Reporting</topic><topic>Public Health Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamache, Roland E</creatorcontrib><creatorcontrib>Dixon, Brian E</creatorcontrib><creatorcontrib>Grannis, Shaun</creatorcontrib><creatorcontrib>Vreeman, Daniel J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamache, Roland E</au><au>Dixon, Brian E</au><au>Grannis, Shaun</au><au>Vreeman, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of selective mapping strategies on automated laboratory result notification to public health authorities</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2012</date><risdate>2012</risdate><volume>2012</volume><spage>228</spage><epage>236</epage><pages>228-236</pages><eissn>1559-4076</eissn><abstract>Automated electronic laboratory reporting (ELR) for public health has many potential advantages, but requires mapping local laboratory test codes to a standard vocabulary such as LOINC. Mapping only the most frequently reported tests provides one way to prioritize the effort and mitigate the resource burden. We evaluated the implications of selective mapping on ELR for public health by comparing reportable conditions from an operational ELR system with the codes in the LOINC Top 2000. Laboratory result codes in the LOINC Top 2000 accounted for 65.3% of the reportable condition volume. However, by also including the 129 most frequent LOINC codes that identified reportable conditions in our system but were not present in the LOINC Top 2000, this set would cover 98% of the reportable condition volume. Our study highlights the ways that our approach to implementing vocabulary standards impacts secondary data uses such as public health reporting.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>23304292</pmid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2012, Vol.2012, p.228-236
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540490
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Automatic Data Processing
Clinical Laboratory Information Systems - standards
Computer Communication Networks
Humans
Indiana
Logical Observation Identifiers Names and Codes
Mandatory Reporting
Public Health Administration
title Impact of selective mapping strategies on automated laboratory result notification to public health authorities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20selective%20mapping%20strategies%20on%20automated%20laboratory%20result%20notification%20to%20public%20health%20authorities&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Gamache,%20Roland%20E&rft.date=2012&rft.volume=2012&rft.spage=228&rft.epage=236&rft.pages=228-236&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1273380514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273380514&rft_id=info:pmid/23304292&rfr_iscdi=true