Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles

The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2012-12, Vol.3 (1), p.1308-1308, Article 1308
Hauptverfasser: Horiuchi, Sachio, Kagawa, Fumitaka, Hatahara, Kensuke, Kobayashi, Kensuke, Kumai, Reiji, Murakami, Youichi, Tokura, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue 1
container_start_page 1308
container_title Nature communications
container_volume 3
creator Horiuchi, Sachio
Kagawa, Fumitaka
Hatahara, Kensuke
Kobayashi, Kensuke
Kumai, Reiji
Murakami, Youichi
Tokura, Yoshinori
description The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization–electric field ( P–E ) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm −2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P–E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure–property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices. There are only a few known organic ferroelectrics, particularly ones that operate at high temperatures. Here the discovery of ferroelectricity above room temperature in members of an ubiquitous family of organic molecules reveals the possibility of novel low-cost electronic applications.
doi_str_mv 10.1038/ncomms2322
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3535420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273249189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-15dfba310fce73f6d2c1d78384cf5f8f35a711400a63da267d36ab6344a59f6d3</originalsourceid><addsrcrecordid>eNplkVtLAzEQhYMoWmpf_AFS8EWU1dz20hehFG8gCKLPIZud1MhuUpPdQvvrjbTWagNDAufjzGQOQicEXxHMimurXNMEyijdQz2KOUlITtn-1vsIDUL4wPGwESk4P0RHEU8xZ0UPvYxLN4fEO9ckLTQz8LLtPAw1eO-gBtV6o0y7GEpbxWrNjmDssAS7NI2p5NLVEI7RgZZ1gMH67qO3u9vXyUPy9Hz_OBk_JYpz2iYkrXQpGcFaQc50VlFFqrxgBVc61YVmqcwJ4RjLjFWSZnnFMllmjHOZjiLO-uhm5TvrygYqBbb1shYzbxrpF8JJI_4q1ryLqZsLlrKUUxwNztcG3n12EFrRmKCgrqUF1wVBaM4ojzsbRfTsH_rhOm_j9yLFc17QAmeRulhRyrsQPOjNMASL77TEb1oRPt0ef4P-ZBOByxUQomSn4Ld67tp9ASA3ofU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1247482806</pqid></control><display><type>article</type><title>Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles</title><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Horiuchi, Sachio ; Kagawa, Fumitaka ; Hatahara, Kensuke ; Kobayashi, Kensuke ; Kumai, Reiji ; Murakami, Youichi ; Tokura, Yoshinori</creator><creatorcontrib>Horiuchi, Sachio ; Kagawa, Fumitaka ; Hatahara, Kensuke ; Kobayashi, Kensuke ; Kumai, Reiji ; Murakami, Youichi ; Tokura, Yoshinori</creatorcontrib><description>The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization–electric field ( P–E ) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm −2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P–E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure–property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices. There are only a few known organic ferroelectrics, particularly ones that operate at high temperatures. Here the discovery of ferroelectricity above room temperature in members of an ubiquitous family of organic molecules reveals the possibility of novel low-cost electronic applications.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2322</identifier><identifier>PMID: 23250438</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403 ; 639/766/119/996 ; Ferroelectrics ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2012-12, Vol.3 (1), p.1308-1308, Article 1308</ispartof><rights>The Author(s) 2012</rights><rights>Copyright Nature Publishing Group Dec 2012</rights><rights>Copyright © 2012, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2012 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-15dfba310fce73f6d2c1d78384cf5f8f35a711400a63da267d36ab6344a59f6d3</citedby><cites>FETCH-LOGICAL-c442t-15dfba310fce73f6d2c1d78384cf5f8f35a711400a63da267d36ab6344a59f6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535420/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535420/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23250438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horiuchi, Sachio</creatorcontrib><creatorcontrib>Kagawa, Fumitaka</creatorcontrib><creatorcontrib>Hatahara, Kensuke</creatorcontrib><creatorcontrib>Kobayashi, Kensuke</creatorcontrib><creatorcontrib>Kumai, Reiji</creatorcontrib><creatorcontrib>Murakami, Youichi</creatorcontrib><creatorcontrib>Tokura, Yoshinori</creatorcontrib><title>Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization–electric field ( P–E ) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm −2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P–E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure–property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices. There are only a few known organic ferroelectrics, particularly ones that operate at high temperatures. Here the discovery of ferroelectricity above room temperature in members of an ubiquitous family of organic molecules reveals the possibility of novel low-cost electronic applications.</description><subject>639/638/403</subject><subject>639/766/119/996</subject><subject>Ferroelectrics</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkVtLAzEQhYMoWmpf_AFS8EWU1dz20hehFG8gCKLPIZud1MhuUpPdQvvrjbTWagNDAufjzGQOQicEXxHMimurXNMEyijdQz2KOUlITtn-1vsIDUL4wPGwESk4P0RHEU8xZ0UPvYxLN4fEO9ckLTQz8LLtPAw1eO-gBtV6o0y7GEpbxWrNjmDssAS7NI2p5NLVEI7RgZZ1gMH67qO3u9vXyUPy9Hz_OBk_JYpz2iYkrXQpGcFaQc50VlFFqrxgBVc61YVmqcwJ4RjLjFWSZnnFMllmjHOZjiLO-uhm5TvrygYqBbb1shYzbxrpF8JJI_4q1ryLqZsLlrKUUxwNztcG3n12EFrRmKCgrqUF1wVBaM4ojzsbRfTsH_rhOm_j9yLFc17QAmeRulhRyrsQPOjNMASL77TEb1oRPt0ef4P-ZBOByxUQomSn4Ld67tp9ASA3ofU</recordid><startdate>20121218</startdate><enddate>20121218</enddate><creator>Horiuchi, Sachio</creator><creator>Kagawa, Fumitaka</creator><creator>Hatahara, Kensuke</creator><creator>Kobayashi, Kensuke</creator><creator>Kumai, Reiji</creator><creator>Murakami, Youichi</creator><creator>Tokura, Yoshinori</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121218</creationdate><title>Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles</title><author>Horiuchi, Sachio ; Kagawa, Fumitaka ; Hatahara, Kensuke ; Kobayashi, Kensuke ; Kumai, Reiji ; Murakami, Youichi ; Tokura, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-15dfba310fce73f6d2c1d78384cf5f8f35a711400a63da267d36ab6344a59f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/638/403</topic><topic>639/766/119/996</topic><topic>Ferroelectrics</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horiuchi, Sachio</creatorcontrib><creatorcontrib>Kagawa, Fumitaka</creatorcontrib><creatorcontrib>Hatahara, Kensuke</creatorcontrib><creatorcontrib>Kobayashi, Kensuke</creatorcontrib><creatorcontrib>Kumai, Reiji</creatorcontrib><creatorcontrib>Murakami, Youichi</creatorcontrib><creatorcontrib>Tokura, Yoshinori</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horiuchi, Sachio</au><au>Kagawa, Fumitaka</au><au>Hatahara, Kensuke</au><au>Kobayashi, Kensuke</au><au>Kumai, Reiji</au><au>Murakami, Youichi</au><au>Tokura, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012-12-18</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>1308</spage><epage>1308</epage><pages>1308-1308</pages><artnum>1308</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization–electric field ( P–E ) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm −2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P–E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure–property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices. There are only a few known organic ferroelectrics, particularly ones that operate at high temperatures. Here the discovery of ferroelectricity above room temperature in members of an ubiquitous family of organic molecules reveals the possibility of novel low-cost electronic applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23250438</pmid><doi>10.1038/ncomms2322</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2012-12, Vol.3 (1), p.1308-1308, Article 1308
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3535420
source Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 639/638/403
639/766/119/996
Ferroelectrics
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Above-room-temperature%20ferroelectricity%20and%20antiferroelectricity%20in%20benzimidazoles&rft.jtitle=Nature%20communications&rft.au=Horiuchi,%20Sachio&rft.date=2012-12-18&rft.volume=3&rft.issue=1&rft.spage=1308&rft.epage=1308&rft.pages=1308-1308&rft.artnum=1308&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2322&rft_dat=%3Cproquest_pubme%3E1273249189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1247482806&rft_id=info:pmid/23250438&rfr_iscdi=true