Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor
Key points • Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy. • The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2012-12, Vol.590 (24), p.6381-6387 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6387 |
---|---|
container_issue | 24 |
container_start_page | 6381 |
container_title | The Journal of physiology |
container_volume | 590 |
creator | Andersson, Daniel C. Betzenhauser, Matthew J. Reiken, Steven Umanskaya, Alisa Shiomi, Takayuki Marks, Andrew R. |
description | Key points
•
Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy.
•
The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell.
•
Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress.
•
These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).
Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1. |
doi_str_mv | 10.1113/jphysiol.2012.237925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1240217690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</originalsourceid><addsrcrecordid>eNqNks1qFTEYhgdR7LF6ByIDbtzMMf-TbIRS_KWgYF2HnMwXT07nJNNkpjK7XkKv0Ssxw2mLutFFSCDP85Kft6qeY7TGGNPXu2E7Zx_7NUGYrAltFeEPqhVmQjVtq-jDaoUQIQ1tOT6qnuS8QwhTpNTj6ohQ1CKh5Kq6-jomyPnn9Y0P3WShq32wCUyGsqjzBfQwmr7eT9n2ULuYLNQJLidfrHpIcYSCXfiwCCf1sI25jDT3ZvQx1NHV47YIswmx82FRLQxjTE-rR870GZ7dzsfVt3dvz08_NGef3388PTlrLJecNRhhZoiS0jJOnGMSNhuBpHEgMbQEOy67TigkBO6kxM5JJSyxAKwTIJGhx9WbQ-4wbfbQWQhjMr0ekt-bNOtovP5zJ_it_h6vNOWUYqVKwKvbgBQvJ8ij3vtsoe9NgDhljSnmAnFOxb9RwhDBbTluQV_-he7ilEJ5CY0545Shtl0odqBsijkncPfnxkgvHdB3HdBLB_ShA0V78fud76W7Ty-AOgA_fA_zf4Xq809fOCOM_gJGNcVe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545340770</pqid></control><display><type>article</type><title>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</title><source>IngentaConnect Backfiles</source><source>Wiley-Blackwell Backfiles (Open access)</source><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>PubMed</source><source>EZB Electronic Journals Library</source><creator>Andersson, Daniel C. ; Betzenhauser, Matthew J. ; Reiken, Steven ; Umanskaya, Alisa ; Shiomi, Takayuki ; Marks, Andrew R.</creator><creatorcontrib>Andersson, Daniel C. ; Betzenhauser, Matthew J. ; Reiken, Steven ; Umanskaya, Alisa ; Shiomi, Takayuki ; Marks, Andrew R.</creatorcontrib><description>Key points
•
Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy.
•
The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell.
•
Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress.
•
These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).
Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2012.237925</identifier><identifier>PMID: 23070698</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adrenergic beta-Agonists - pharmacology ; Alanine ; Animals ; Calcium (reticular) ; Calcium release channels ; Calcium Signaling - drug effects ; Catecholamines ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Data processing ; Defensive behavior ; isoproterenol ; Isoproterenol - pharmacology ; Kinases ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular modelling ; Muscle contraction ; Muscle Contraction - drug effects ; Muscle Fibers, Fast-Twitch - drug effects ; Muscle Fibers, Fast-Twitch - enzymology ; Muscle Strength - drug effects ; Muscular strength ; Musculoskeletal system ; Phosphorylation ; Point Mutation ; Protein kinase A ; Rodents ; Ryanodine Receptor Calcium Release Channel - genetics ; Ryanodine Receptor Calcium Release Channel - metabolism ; Ryanodine receptors ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - drug effects ; Sarcoplasmic Reticulum - metabolism ; Serine ; Skeletal muscle ; Skeletal Muscle and Exercise ; Stress ; Time Factors</subject><ispartof>The Journal of physiology, 2012-12, Vol.590 (24), p.6381-6387</ispartof><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society</rights><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</citedby><cites>FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533199/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533199/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27923,27924,45573,45574,46408,46832,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23070698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andersson, Daniel C.</creatorcontrib><creatorcontrib>Betzenhauser, Matthew J.</creatorcontrib><creatorcontrib>Reiken, Steven</creatorcontrib><creatorcontrib>Umanskaya, Alisa</creatorcontrib><creatorcontrib>Shiomi, Takayuki</creatorcontrib><creatorcontrib>Marks, Andrew R.</creatorcontrib><title>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Key points
•
Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy.
•
The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell.
•
Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress.
•
These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).
Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1.</description><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Alanine</subject><subject>Animals</subject><subject>Calcium (reticular)</subject><subject>Calcium release channels</subject><subject>Calcium Signaling - drug effects</subject><subject>Catecholamines</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Data processing</subject><subject>Defensive behavior</subject><subject>isoproterenol</subject><subject>Isoproterenol - pharmacology</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Molecular modelling</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle Fibers, Fast-Twitch - drug effects</subject><subject>Muscle Fibers, Fast-Twitch - enzymology</subject><subject>Muscle Strength - drug effects</subject><subject>Muscular strength</subject><subject>Musculoskeletal system</subject><subject>Phosphorylation</subject><subject>Point Mutation</subject><subject>Protein kinase A</subject><subject>Rodents</subject><subject>Ryanodine Receptor Calcium Release Channel - genetics</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Ryanodine receptors</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - drug effects</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Serine</subject><subject>Skeletal muscle</subject><subject>Skeletal Muscle and Exercise</subject><subject>Stress</subject><subject>Time Factors</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1qFTEYhgdR7LF6ByIDbtzMMf-TbIRS_KWgYF2HnMwXT07nJNNkpjK7XkKv0Ssxw2mLutFFSCDP85Kft6qeY7TGGNPXu2E7Zx_7NUGYrAltFeEPqhVmQjVtq-jDaoUQIQ1tOT6qnuS8QwhTpNTj6ohQ1CKh5Kq6-jomyPnn9Y0P3WShq32wCUyGsqjzBfQwmr7eT9n2ULuYLNQJLidfrHpIcYSCXfiwCCf1sI25jDT3ZvQx1NHV47YIswmx82FRLQxjTE-rR870GZ7dzsfVt3dvz08_NGef3388PTlrLJecNRhhZoiS0jJOnGMSNhuBpHEgMbQEOy67TigkBO6kxM5JJSyxAKwTIJGhx9WbQ-4wbfbQWQhjMr0ekt-bNOtovP5zJ_it_h6vNOWUYqVKwKvbgBQvJ8ij3vtsoe9NgDhljSnmAnFOxb9RwhDBbTluQV_-he7ilEJ5CY0545Shtl0odqBsijkncPfnxkgvHdB3HdBLB_ShA0V78fud76W7Ty-AOgA_fA_zf4Xq809fOCOM_gJGNcVe</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Andersson, Daniel C.</creator><creator>Betzenhauser, Matthew J.</creator><creator>Reiken, Steven</creator><creator>Umanskaya, Alisa</creator><creator>Shiomi, Takayuki</creator><creator>Marks, Andrew R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201212</creationdate><title>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</title><author>Andersson, Daniel C. ; Betzenhauser, Matthew J. ; Reiken, Steven ; Umanskaya, Alisa ; Shiomi, Takayuki ; Marks, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Alanine</topic><topic>Animals</topic><topic>Calcium (reticular)</topic><topic>Calcium release channels</topic><topic>Calcium Signaling - drug effects</topic><topic>Catecholamines</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Data processing</topic><topic>Defensive behavior</topic><topic>isoproterenol</topic><topic>Isoproterenol - pharmacology</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Molecular modelling</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle Fibers, Fast-Twitch - drug effects</topic><topic>Muscle Fibers, Fast-Twitch - enzymology</topic><topic>Muscle Strength - drug effects</topic><topic>Muscular strength</topic><topic>Musculoskeletal system</topic><topic>Phosphorylation</topic><topic>Point Mutation</topic><topic>Protein kinase A</topic><topic>Rodents</topic><topic>Ryanodine Receptor Calcium Release Channel - genetics</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Ryanodine receptors</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - drug effects</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Serine</topic><topic>Skeletal muscle</topic><topic>Skeletal Muscle and Exercise</topic><topic>Stress</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersson, Daniel C.</creatorcontrib><creatorcontrib>Betzenhauser, Matthew J.</creatorcontrib><creatorcontrib>Reiken, Steven</creatorcontrib><creatorcontrib>Umanskaya, Alisa</creatorcontrib><creatorcontrib>Shiomi, Takayuki</creatorcontrib><creatorcontrib>Marks, Andrew R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersson, Daniel C.</au><au>Betzenhauser, Matthew J.</au><au>Reiken, Steven</au><au>Umanskaya, Alisa</au><au>Shiomi, Takayuki</au><au>Marks, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2012-12</date><risdate>2012</risdate><volume>590</volume><issue>24</issue><spage>6381</spage><epage>6387</epage><pages>6381-6387</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Key points
•
Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy.
•
The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell.
•
Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress.
•
These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).
Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>23070698</pmid><doi>10.1113/jphysiol.2012.237925</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2012-12, Vol.590 (24), p.6381-6387 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533199 |
source | IngentaConnect Backfiles; Wiley-Blackwell Backfiles (Open access); MEDLINE; Wiley Online Library Journals; PubMed; EZB Electronic Journals Library |
subjects | Adrenergic beta-Agonists - pharmacology Alanine Animals Calcium (reticular) Calcium release channels Calcium Signaling - drug effects Catecholamines Cyclic AMP-Dependent Protein Kinases - metabolism Data processing Defensive behavior isoproterenol Isoproterenol - pharmacology Kinases Mice Mice, 129 Strain Mice, Inbred C57BL Mice, Transgenic Molecular modelling Muscle contraction Muscle Contraction - drug effects Muscle Fibers, Fast-Twitch - drug effects Muscle Fibers, Fast-Twitch - enzymology Muscle Strength - drug effects Muscular strength Musculoskeletal system Phosphorylation Point Mutation Protein kinase A Rodents Ryanodine Receptor Calcium Release Channel - genetics Ryanodine Receptor Calcium Release Channel - metabolism Ryanodine receptors Sarcoplasmic reticulum Sarcoplasmic Reticulum - drug effects Sarcoplasmic Reticulum - metabolism Serine Skeletal muscle Skeletal Muscle and Exercise Stress Time Factors |
title | Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%E2%80%90induced%20increase%20in%20skeletal%20muscle%20force%20requires%20protein%20kinase%20A%20phosphorylation%20of%20the%20ryanodine%20receptor&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Andersson,%20Daniel%20C.&rft.date=2012-12&rft.volume=590&rft.issue=24&rft.spage=6381&rft.epage=6387&rft.pages=6381-6387&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2012.237925&rft_dat=%3Cproquest_pubme%3E1240217690%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545340770&rft_id=info:pmid/23070698&rfr_iscdi=true |