Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor

Key points •  Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy. •  The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2012-12, Vol.590 (24), p.6381-6387
Hauptverfasser: Andersson, Daniel C., Betzenhauser, Matthew J., Reiken, Steven, Umanskaya, Alisa, Shiomi, Takayuki, Marks, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6387
container_issue 24
container_start_page 6381
container_title The Journal of physiology
container_volume 590
creator Andersson, Daniel C.
Betzenhauser, Matthew J.
Reiken, Steven
Umanskaya, Alisa
Shiomi, Takayuki
Marks, Andrew R.
description Key points •  Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy. •  The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell. •  Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress. •  These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).   Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1.
doi_str_mv 10.1113/jphysiol.2012.237925
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1240217690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</originalsourceid><addsrcrecordid>eNqNks1qFTEYhgdR7LF6ByIDbtzMMf-TbIRS_KWgYF2HnMwXT07nJNNkpjK7XkKv0Ssxw2mLutFFSCDP85Kft6qeY7TGGNPXu2E7Zx_7NUGYrAltFeEPqhVmQjVtq-jDaoUQIQ1tOT6qnuS8QwhTpNTj6ohQ1CKh5Kq6-jomyPnn9Y0P3WShq32wCUyGsqjzBfQwmr7eT9n2ULuYLNQJLidfrHpIcYSCXfiwCCf1sI25jDT3ZvQx1NHV47YIswmx82FRLQxjTE-rR870GZ7dzsfVt3dvz08_NGef3388PTlrLJecNRhhZoiS0jJOnGMSNhuBpHEgMbQEOy67TigkBO6kxM5JJSyxAKwTIJGhx9WbQ-4wbfbQWQhjMr0ekt-bNOtovP5zJ_it_h6vNOWUYqVKwKvbgBQvJ8ij3vtsoe9NgDhljSnmAnFOxb9RwhDBbTluQV_-he7ilEJ5CY0545Shtl0odqBsijkncPfnxkgvHdB3HdBLB_ShA0V78fud76W7Ty-AOgA_fA_zf4Xq809fOCOM_gJGNcVe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545340770</pqid></control><display><type>article</type><title>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</title><source>IngentaConnect Backfiles</source><source>Wiley-Blackwell Backfiles (Open access)</source><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>PubMed</source><source>EZB Electronic Journals Library</source><creator>Andersson, Daniel C. ; Betzenhauser, Matthew J. ; Reiken, Steven ; Umanskaya, Alisa ; Shiomi, Takayuki ; Marks, Andrew R.</creator><creatorcontrib>Andersson, Daniel C. ; Betzenhauser, Matthew J. ; Reiken, Steven ; Umanskaya, Alisa ; Shiomi, Takayuki ; Marks, Andrew R.</creatorcontrib><description>Key points •  Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy. •  The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell. •  Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress. •  These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).   Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2012.237925</identifier><identifier>PMID: 23070698</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adrenergic beta-Agonists - pharmacology ; Alanine ; Animals ; Calcium (reticular) ; Calcium release channels ; Calcium Signaling - drug effects ; Catecholamines ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Data processing ; Defensive behavior ; isoproterenol ; Isoproterenol - pharmacology ; Kinases ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular modelling ; Muscle contraction ; Muscle Contraction - drug effects ; Muscle Fibers, Fast-Twitch - drug effects ; Muscle Fibers, Fast-Twitch - enzymology ; Muscle Strength - drug effects ; Muscular strength ; Musculoskeletal system ; Phosphorylation ; Point Mutation ; Protein kinase A ; Rodents ; Ryanodine Receptor Calcium Release Channel - genetics ; Ryanodine Receptor Calcium Release Channel - metabolism ; Ryanodine receptors ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - drug effects ; Sarcoplasmic Reticulum - metabolism ; Serine ; Skeletal muscle ; Skeletal Muscle and Exercise ; Stress ; Time Factors</subject><ispartof>The Journal of physiology, 2012-12, Vol.590 (24), p.6381-6387</ispartof><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society</rights><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</citedby><cites>FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533199/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533199/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27923,27924,45573,45574,46408,46832,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23070698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andersson, Daniel C.</creatorcontrib><creatorcontrib>Betzenhauser, Matthew J.</creatorcontrib><creatorcontrib>Reiken, Steven</creatorcontrib><creatorcontrib>Umanskaya, Alisa</creatorcontrib><creatorcontrib>Shiomi, Takayuki</creatorcontrib><creatorcontrib>Marks, Andrew R.</creatorcontrib><title>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Key points •  Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy. •  The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell. •  Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress. •  These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).   Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1.</description><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Alanine</subject><subject>Animals</subject><subject>Calcium (reticular)</subject><subject>Calcium release channels</subject><subject>Calcium Signaling - drug effects</subject><subject>Catecholamines</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Data processing</subject><subject>Defensive behavior</subject><subject>isoproterenol</subject><subject>Isoproterenol - pharmacology</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Molecular modelling</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle Fibers, Fast-Twitch - drug effects</subject><subject>Muscle Fibers, Fast-Twitch - enzymology</subject><subject>Muscle Strength - drug effects</subject><subject>Muscular strength</subject><subject>Musculoskeletal system</subject><subject>Phosphorylation</subject><subject>Point Mutation</subject><subject>Protein kinase A</subject><subject>Rodents</subject><subject>Ryanodine Receptor Calcium Release Channel - genetics</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Ryanodine receptors</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - drug effects</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Serine</subject><subject>Skeletal muscle</subject><subject>Skeletal Muscle and Exercise</subject><subject>Stress</subject><subject>Time Factors</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1qFTEYhgdR7LF6ByIDbtzMMf-TbIRS_KWgYF2HnMwXT07nJNNkpjK7XkKv0Ssxw2mLutFFSCDP85Kft6qeY7TGGNPXu2E7Zx_7NUGYrAltFeEPqhVmQjVtq-jDaoUQIQ1tOT6qnuS8QwhTpNTj6ohQ1CKh5Kq6-jomyPnn9Y0P3WShq32wCUyGsqjzBfQwmr7eT9n2ULuYLNQJLidfrHpIcYSCXfiwCCf1sI25jDT3ZvQx1NHV47YIswmx82FRLQxjTE-rR870GZ7dzsfVt3dvz08_NGef3388PTlrLJecNRhhZoiS0jJOnGMSNhuBpHEgMbQEOy67TigkBO6kxM5JJSyxAKwTIJGhx9WbQ-4wbfbQWQhjMr0ekt-bNOtovP5zJ_it_h6vNOWUYqVKwKvbgBQvJ8ij3vtsoe9NgDhljSnmAnFOxb9RwhDBbTluQV_-he7ilEJ5CY0545Shtl0odqBsijkncPfnxkgvHdB3HdBLB_ShA0V78fud76W7Ty-AOgA_fA_zf4Xq809fOCOM_gJGNcVe</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Andersson, Daniel C.</creator><creator>Betzenhauser, Matthew J.</creator><creator>Reiken, Steven</creator><creator>Umanskaya, Alisa</creator><creator>Shiomi, Takayuki</creator><creator>Marks, Andrew R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201212</creationdate><title>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</title><author>Andersson, Daniel C. ; Betzenhauser, Matthew J. ; Reiken, Steven ; Umanskaya, Alisa ; Shiomi, Takayuki ; Marks, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5854-1014a2988c452ff48ebb608afe81e721f58dd690661d881ff896c2cee4d6e80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Alanine</topic><topic>Animals</topic><topic>Calcium (reticular)</topic><topic>Calcium release channels</topic><topic>Calcium Signaling - drug effects</topic><topic>Catecholamines</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Data processing</topic><topic>Defensive behavior</topic><topic>isoproterenol</topic><topic>Isoproterenol - pharmacology</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Molecular modelling</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle Fibers, Fast-Twitch - drug effects</topic><topic>Muscle Fibers, Fast-Twitch - enzymology</topic><topic>Muscle Strength - drug effects</topic><topic>Muscular strength</topic><topic>Musculoskeletal system</topic><topic>Phosphorylation</topic><topic>Point Mutation</topic><topic>Protein kinase A</topic><topic>Rodents</topic><topic>Ryanodine Receptor Calcium Release Channel - genetics</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Ryanodine receptors</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - drug effects</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Serine</topic><topic>Skeletal muscle</topic><topic>Skeletal Muscle and Exercise</topic><topic>Stress</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersson, Daniel C.</creatorcontrib><creatorcontrib>Betzenhauser, Matthew J.</creatorcontrib><creatorcontrib>Reiken, Steven</creatorcontrib><creatorcontrib>Umanskaya, Alisa</creatorcontrib><creatorcontrib>Shiomi, Takayuki</creatorcontrib><creatorcontrib>Marks, Andrew R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersson, Daniel C.</au><au>Betzenhauser, Matthew J.</au><au>Reiken, Steven</au><au>Umanskaya, Alisa</au><au>Shiomi, Takayuki</au><au>Marks, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2012-12</date><risdate>2012</risdate><volume>590</volume><issue>24</issue><spage>6381</spage><epage>6387</epage><pages>6381-6387</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Key points •  Under conditions of acute adrenergic stress (i.e. fight or flight response), the contractile force of muscle is enhanced, a phenomenon known as inotropy. •  The molecular determinant of the inotropic mechanism is poorly understood but involves potentiated release of calcium within the muscle cell. •  Here we report that adrenergic receptor‐dependent phosphorylation of a single amino acid in the calcium release channel (ryanodine receptor 1) mediates the increased calcium and force that is seen in the muscle following acute stress. •  These findings further our understanding of the molecular mechanisms of muscular force regulation, and the importance for exercise physiology and muscle weakness (dynopenia).   Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle β‐adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild‐type mice with the β‐receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca2+ and force generation. In contrast, the enhanced muscle Ca2+, force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1‐S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca2+ release due to PKA phosphorylation of S2844 in RyR1.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>23070698</pmid><doi>10.1113/jphysiol.2012.237925</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2012-12, Vol.590 (24), p.6381-6387
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533199
source IngentaConnect Backfiles; Wiley-Blackwell Backfiles (Open access); MEDLINE; Wiley Online Library Journals; PubMed; EZB Electronic Journals Library
subjects Adrenergic beta-Agonists - pharmacology
Alanine
Animals
Calcium (reticular)
Calcium release channels
Calcium Signaling - drug effects
Catecholamines
Cyclic AMP-Dependent Protein Kinases - metabolism
Data processing
Defensive behavior
isoproterenol
Isoproterenol - pharmacology
Kinases
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Transgenic
Molecular modelling
Muscle contraction
Muscle Contraction - drug effects
Muscle Fibers, Fast-Twitch - drug effects
Muscle Fibers, Fast-Twitch - enzymology
Muscle Strength - drug effects
Muscular strength
Musculoskeletal system
Phosphorylation
Point Mutation
Protein kinase A
Rodents
Ryanodine Receptor Calcium Release Channel - genetics
Ryanodine Receptor Calcium Release Channel - metabolism
Ryanodine receptors
Sarcoplasmic reticulum
Sarcoplasmic Reticulum - drug effects
Sarcoplasmic Reticulum - metabolism
Serine
Skeletal muscle
Skeletal Muscle and Exercise
Stress
Time Factors
title Stress‐induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%E2%80%90induced%20increase%20in%20skeletal%20muscle%20force%20requires%20protein%20kinase%20A%20phosphorylation%20of%20the%20ryanodine%20receptor&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Andersson,%20Daniel%20C.&rft.date=2012-12&rft.volume=590&rft.issue=24&rft.spage=6381&rft.epage=6387&rft.pages=6381-6387&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2012.237925&rft_dat=%3Cproquest_pubme%3E1240217690%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545340770&rft_id=info:pmid/23070698&rfr_iscdi=true