Cholinergic control of the cerebral vasculature in humans

Key points •  Cerebral autoregulation maintains cerebral perfusion relatively constant in the face of slow changes in arterial pressure, but is less effective against more rapid changes (i.e. functions as a ‘high‐pass’ filter). •  While thought to be maintained mainly through myogenic adjustments to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2012-12, Vol.590 (24), p.6343-6352
Hauptverfasser: Hamner, J. W., Tan, Can Ozan, Tzeng, Yu‐Chieh, Taylor, J. Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6352
container_issue 24
container_start_page 6343
container_title The Journal of physiology
container_volume 590
creator Hamner, J. W.
Tan, Can Ozan
Tzeng, Yu‐Chieh
Taylor, J. Andrew
description Key points •  Cerebral autoregulation maintains cerebral perfusion relatively constant in the face of slow changes in arterial pressure, but is less effective against more rapid changes (i.e. functions as a ‘high‐pass’ filter). •  While thought to be maintained mainly through myogenic adjustments to changes in transmural pressure, recent work has highlighted a possibility of active autonomic involvement in cerebral autoregulation. •  In this study we examined the cerebrovascular effects of cholinergic blockade on nine healthy volunteers during the application of oscillatory lower body pressure at six frequencies from 0.03 to 0.08 Hz. •  Cholinergic blockade impaired autoregulation at frequencies above 0.04 Hz, suggesting a role for active cholinergic vasodilatation in the maintenance of cerebral perfusion.   Despite growing evidence of autonomic nervous system involvement in the regulation of cerebral blood flow, the specific contribution of cholinergic vasodilatation to cerebral autoregulation remains unknown. We examined cerebral and forearm blood flow responses to augmented arterial pressure oscillations with and without cholinergic blockade. Oscillatory lower body negative pressure was applied at six frequencies from 0.03 to 0.08 Hz in nine healthy subjects with and without cholinergic blockade via glycopyrrolate. Cholinergic blockade increased cross‐spectral coherence between arterial pressure and cerebral flow at all frequencies except 0.03 Hz and increased the transfer function gain at frequencies above 0.05 Hz. In contrast, gain between pressure and forearm flow increased only at frequencies below 0.06 Hz. These data demonstrate that the cholinergic system plays an active and unique role in cerebral autoregulation. The frequency region and magnitude of effect is very similar to what has been seen with sympathetic blockade, indicating a possible balance between the two reflexes to most effectively respond to rising and falling pressure. These findings might have implications for the role of dysfunction in autonomic control of the vasculature in cerebrovascular disease states.
doi_str_mv 10.1113/jphysiol.2012.245100
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3374395161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5858-2ec73884d9c1b5d4e5d1b1e7ad4f3b0d2081783934846842af21cac37c365f383</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpabZJ_0EJhl568VajkSzpEghLPwm0h-QsZFmOtWitrbTesP--DpuEppeWOegwz7zM6CHkHdAlAODH9XY4lJDiklFgS8YFUPqCLIA3upZS40uyoJSxGqWAE_KmlDWlgFTr1-SEIZVz0QXRqyHFMPp8G1zl0rjLKVapr3aDr5zPvs02Vntb3BTtbsq-CmM1TBs7ljPyqrex-LcP7ym5-fzpevW1vvrx5dvq8qp2QglVM-8kKsU77aAVHfeigxa8tB3vsaUdowqkQo1c8UZxZnsGzjqUDhvRo8JTcnHM3U7txnfOzzvaaLY5bGw-mGSDed4Zw2Bu096gQATdzAEfHgJy-jX5sjObUJyP0Y4-TcUAB42Napj-N8o4ZSAbLWf0_V_oOk15nH_CgOACOXCGM8WPlMuplOz7p72BmnuN5lGjuddojhrnsfM_b34aevQ2A_oI3IXoD_8Vaq6__xScKfwN2NWsHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545341423</pqid></control><display><type>article</type><title>Cholinergic control of the cerebral vasculature in humans</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Hamner, J. W. ; Tan, Can Ozan ; Tzeng, Yu‐Chieh ; Taylor, J. Andrew</creator><creatorcontrib>Hamner, J. W. ; Tan, Can Ozan ; Tzeng, Yu‐Chieh ; Taylor, J. Andrew</creatorcontrib><description>Key points •  Cerebral autoregulation maintains cerebral perfusion relatively constant in the face of slow changes in arterial pressure, but is less effective against more rapid changes (i.e. functions as a ‘high‐pass’ filter). •  While thought to be maintained mainly through myogenic adjustments to changes in transmural pressure, recent work has highlighted a possibility of active autonomic involvement in cerebral autoregulation. •  In this study we examined the cerebrovascular effects of cholinergic blockade on nine healthy volunteers during the application of oscillatory lower body pressure at six frequencies from 0.03 to 0.08 Hz. •  Cholinergic blockade impaired autoregulation at frequencies above 0.04 Hz, suggesting a role for active cholinergic vasodilatation in the maintenance of cerebral perfusion.   Despite growing evidence of autonomic nervous system involvement in the regulation of cerebral blood flow, the specific contribution of cholinergic vasodilatation to cerebral autoregulation remains unknown. We examined cerebral and forearm blood flow responses to augmented arterial pressure oscillations with and without cholinergic blockade. Oscillatory lower body negative pressure was applied at six frequencies from 0.03 to 0.08 Hz in nine healthy subjects with and without cholinergic blockade via glycopyrrolate. Cholinergic blockade increased cross‐spectral coherence between arterial pressure and cerebral flow at all frequencies except 0.03 Hz and increased the transfer function gain at frequencies above 0.05 Hz. In contrast, gain between pressure and forearm flow increased only at frequencies below 0.06 Hz. These data demonstrate that the cholinergic system plays an active and unique role in cerebral autoregulation. The frequency region and magnitude of effect is very similar to what has been seen with sympathetic blockade, indicating a possible balance between the two reflexes to most effectively respond to rising and falling pressure. These findings might have implications for the role of dysfunction in autonomic control of the vasculature in cerebrovascular disease states.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2012.245100</identifier><identifier>PMID: 23070700</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Arterial Pressure ; Blood Flow Velocity - drug effects ; Blood pressure ; Cardiovascular ; Cerebrovascular Circulation - drug effects ; Cholinergic Fibers - drug effects ; Female ; Forearm - blood supply ; Glycopyrrolate - pharmacology ; Heart Rate - drug effects ; Homeostasis ; Humans ; Lower Body Negative Pressure ; Male ; Middle Cerebral Artery - diagnostic imaging ; Middle Cerebral Artery - drug effects ; Middle Cerebral Artery - innervation ; Muscarinic Antagonists - pharmacology ; Regional Blood Flow - drug effects ; Time Factors ; Ultrasonography, Doppler, Transcranial ; Young Adult</subject><ispartof>The Journal of physiology, 2012-12, Vol.590 (24), p.6343-6352</ispartof><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society</rights><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5858-2ec73884d9c1b5d4e5d1b1e7ad4f3b0d2081783934846842af21cac37c365f383</citedby><cites>FETCH-LOGICAL-c5858-2ec73884d9c1b5d4e5d1b1e7ad4f3b0d2081783934846842af21cac37c365f383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533196/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533196/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23070700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamner, J. W.</creatorcontrib><creatorcontrib>Tan, Can Ozan</creatorcontrib><creatorcontrib>Tzeng, Yu‐Chieh</creatorcontrib><creatorcontrib>Taylor, J. Andrew</creatorcontrib><title>Cholinergic control of the cerebral vasculature in humans</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Key points •  Cerebral autoregulation maintains cerebral perfusion relatively constant in the face of slow changes in arterial pressure, but is less effective against more rapid changes (i.e. functions as a ‘high‐pass’ filter). •  While thought to be maintained mainly through myogenic adjustments to changes in transmural pressure, recent work has highlighted a possibility of active autonomic involvement in cerebral autoregulation. •  In this study we examined the cerebrovascular effects of cholinergic blockade on nine healthy volunteers during the application of oscillatory lower body pressure at six frequencies from 0.03 to 0.08 Hz. •  Cholinergic blockade impaired autoregulation at frequencies above 0.04 Hz, suggesting a role for active cholinergic vasodilatation in the maintenance of cerebral perfusion.   Despite growing evidence of autonomic nervous system involvement in the regulation of cerebral blood flow, the specific contribution of cholinergic vasodilatation to cerebral autoregulation remains unknown. We examined cerebral and forearm blood flow responses to augmented arterial pressure oscillations with and without cholinergic blockade. Oscillatory lower body negative pressure was applied at six frequencies from 0.03 to 0.08 Hz in nine healthy subjects with and without cholinergic blockade via glycopyrrolate. Cholinergic blockade increased cross‐spectral coherence between arterial pressure and cerebral flow at all frequencies except 0.03 Hz and increased the transfer function gain at frequencies above 0.05 Hz. In contrast, gain between pressure and forearm flow increased only at frequencies below 0.06 Hz. These data demonstrate that the cholinergic system plays an active and unique role in cerebral autoregulation. The frequency region and magnitude of effect is very similar to what has been seen with sympathetic blockade, indicating a possible balance between the two reflexes to most effectively respond to rising and falling pressure. These findings might have implications for the role of dysfunction in autonomic control of the vasculature in cerebrovascular disease states.</description><subject>Adult</subject><subject>Arterial Pressure</subject><subject>Blood Flow Velocity - drug effects</subject><subject>Blood pressure</subject><subject>Cardiovascular</subject><subject>Cerebrovascular Circulation - drug effects</subject><subject>Cholinergic Fibers - drug effects</subject><subject>Female</subject><subject>Forearm - blood supply</subject><subject>Glycopyrrolate - pharmacology</subject><subject>Heart Rate - drug effects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lower Body Negative Pressure</subject><subject>Male</subject><subject>Middle Cerebral Artery - diagnostic imaging</subject><subject>Middle Cerebral Artery - drug effects</subject><subject>Middle Cerebral Artery - innervation</subject><subject>Muscarinic Antagonists - pharmacology</subject><subject>Regional Blood Flow - drug effects</subject><subject>Time Factors</subject><subject>Ultrasonography, Doppler, Transcranial</subject><subject>Young Adult</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpabZJ_0EJhl568VajkSzpEghLPwm0h-QsZFmOtWitrbTesP--DpuEppeWOegwz7zM6CHkHdAlAODH9XY4lJDiklFgS8YFUPqCLIA3upZS40uyoJSxGqWAE_KmlDWlgFTr1-SEIZVz0QXRqyHFMPp8G1zl0rjLKVapr3aDr5zPvs02Vntb3BTtbsq-CmM1TBs7ljPyqrex-LcP7ym5-fzpevW1vvrx5dvq8qp2QglVM-8kKsU77aAVHfeigxa8tB3vsaUdowqkQo1c8UZxZnsGzjqUDhvRo8JTcnHM3U7txnfOzzvaaLY5bGw-mGSDed4Zw2Bu096gQATdzAEfHgJy-jX5sjObUJyP0Y4-TcUAB42Napj-N8o4ZSAbLWf0_V_oOk15nH_CgOACOXCGM8WPlMuplOz7p72BmnuN5lGjuddojhrnsfM_b34aevQ2A_oI3IXoD_8Vaq6__xScKfwN2NWsHA</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Hamner, J. W.</creator><creator>Tan, Can Ozan</creator><creator>Tzeng, Yu‐Chieh</creator><creator>Taylor, J. Andrew</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201212</creationdate><title>Cholinergic control of the cerebral vasculature in humans</title><author>Hamner, J. W. ; Tan, Can Ozan ; Tzeng, Yu‐Chieh ; Taylor, J. Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5858-2ec73884d9c1b5d4e5d1b1e7ad4f3b0d2081783934846842af21cac37c365f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Arterial Pressure</topic><topic>Blood Flow Velocity - drug effects</topic><topic>Blood pressure</topic><topic>Cardiovascular</topic><topic>Cerebrovascular Circulation - drug effects</topic><topic>Cholinergic Fibers - drug effects</topic><topic>Female</topic><topic>Forearm - blood supply</topic><topic>Glycopyrrolate - pharmacology</topic><topic>Heart Rate - drug effects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lower Body Negative Pressure</topic><topic>Male</topic><topic>Middle Cerebral Artery - diagnostic imaging</topic><topic>Middle Cerebral Artery - drug effects</topic><topic>Middle Cerebral Artery - innervation</topic><topic>Muscarinic Antagonists - pharmacology</topic><topic>Regional Blood Flow - drug effects</topic><topic>Time Factors</topic><topic>Ultrasonography, Doppler, Transcranial</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamner, J. W.</creatorcontrib><creatorcontrib>Tan, Can Ozan</creatorcontrib><creatorcontrib>Tzeng, Yu‐Chieh</creatorcontrib><creatorcontrib>Taylor, J. Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamner, J. W.</au><au>Tan, Can Ozan</au><au>Tzeng, Yu‐Chieh</au><au>Taylor, J. Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cholinergic control of the cerebral vasculature in humans</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2012-12</date><risdate>2012</risdate><volume>590</volume><issue>24</issue><spage>6343</spage><epage>6352</epage><pages>6343-6352</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Key points •  Cerebral autoregulation maintains cerebral perfusion relatively constant in the face of slow changes in arterial pressure, but is less effective against more rapid changes (i.e. functions as a ‘high‐pass’ filter). •  While thought to be maintained mainly through myogenic adjustments to changes in transmural pressure, recent work has highlighted a possibility of active autonomic involvement in cerebral autoregulation. •  In this study we examined the cerebrovascular effects of cholinergic blockade on nine healthy volunteers during the application of oscillatory lower body pressure at six frequencies from 0.03 to 0.08 Hz. •  Cholinergic blockade impaired autoregulation at frequencies above 0.04 Hz, suggesting a role for active cholinergic vasodilatation in the maintenance of cerebral perfusion.   Despite growing evidence of autonomic nervous system involvement in the regulation of cerebral blood flow, the specific contribution of cholinergic vasodilatation to cerebral autoregulation remains unknown. We examined cerebral and forearm blood flow responses to augmented arterial pressure oscillations with and without cholinergic blockade. Oscillatory lower body negative pressure was applied at six frequencies from 0.03 to 0.08 Hz in nine healthy subjects with and without cholinergic blockade via glycopyrrolate. Cholinergic blockade increased cross‐spectral coherence between arterial pressure and cerebral flow at all frequencies except 0.03 Hz and increased the transfer function gain at frequencies above 0.05 Hz. In contrast, gain between pressure and forearm flow increased only at frequencies below 0.06 Hz. These data demonstrate that the cholinergic system plays an active and unique role in cerebral autoregulation. The frequency region and magnitude of effect is very similar to what has been seen with sympathetic blockade, indicating a possible balance between the two reflexes to most effectively respond to rising and falling pressure. These findings might have implications for the role of dysfunction in autonomic control of the vasculature in cerebrovascular disease states.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>23070700</pmid><doi>10.1113/jphysiol.2012.245100</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2012-12, Vol.590 (24), p.6343-6352
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533196
source MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Adult
Arterial Pressure
Blood Flow Velocity - drug effects
Blood pressure
Cardiovascular
Cerebrovascular Circulation - drug effects
Cholinergic Fibers - drug effects
Female
Forearm - blood supply
Glycopyrrolate - pharmacology
Heart Rate - drug effects
Homeostasis
Humans
Lower Body Negative Pressure
Male
Middle Cerebral Artery - diagnostic imaging
Middle Cerebral Artery - drug effects
Middle Cerebral Artery - innervation
Muscarinic Antagonists - pharmacology
Regional Blood Flow - drug effects
Time Factors
Ultrasonography, Doppler, Transcranial
Young Adult
title Cholinergic control of the cerebral vasculature in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cholinergic%20control%20of%20the%20cerebral%20vasculature%20in%20humans&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Hamner,%20J.%20W.&rft.date=2012-12&rft.volume=590&rft.issue=24&rft.spage=6343&rft.epage=6352&rft.pages=6343-6352&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2012.245100&rft_dat=%3Cproquest_pubme%3E3374395161%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545341423&rft_id=info:pmid/23070700&rfr_iscdi=true