Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds

Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty adds by the sequential action of a fatty alcohol oxidase (FAO) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2013-01, Vol.161 (1), p.72-80
Hauptverfasser: Rajangam, Alex S., Gidda, Satinder K., Craddock, Christian, Mullen, Robert T., Dyer, John M., Eastmond, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 72
container_title Plant physiology (Bethesda)
container_volume 161
creator Rajangam, Alex S.
Gidda, Satinder K.
Craddock, Christian
Mullen, Robert T.
Dyer, John M.
Eastmond, Peter J.
description Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty adds by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana ) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.
doi_str_mv 10.1104/pp.112.208264
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3532287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41942667</jstor_id><sourcerecordid>41942667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-858b6b82fb1cb43c58245b6fc9f986b532006c3ebf363babebc5da6f60d9e0fa3</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIREPhyBHkCxKXLf7YdbwXpCpqC6hVkQBxtMZemzhy1lvboU3_-jraNMCJ07P0fvPkmVdVrwk-IQQ3H8axKD2hWFDePKlmpGW0pm0jnlYzjMsbC9EdVS9SWmGMCSPN8-qIMsI5a9msur0K3uiNh4gWS4igs4nuHrILAwoW5aVB55DzFp16HZbBo-s710_2V8jLW9giGyL6CXf1WSqz6Coo5x8T3IAuTFy7AbLp0ZewCgrQN2P69LJ6ZsEn82qvx9WP87Pvi0_15fXF58XpZa1bJnItWqG4EtQqolXDdCto0ypudWc7wVXZFWOumVGWcaZAGaXbHrjluO8MtsCOq49T7rhRa9NrM-QIXo7RrSFuZQAn_3UGt5S_wm9ZrkOpmJeA9_uAGG42JmW5dkkb72EwYZMk3V2VYNKS_6KEzhnDDW1wQesJ1TGkFI09_IhguetVjmNRKqdeC__27zUO9GORBXi3ByBp8DbCoF36w80xp6LbBb2ZuFXKIR78hnQN5XzOHgAn_rcV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273304240</pqid></control><display><type>article</type><title>Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Rajangam, Alex S. ; Gidda, Satinder K. ; Craddock, Christian ; Mullen, Robert T. ; Dyer, John M. ; Eastmond, Peter J.</creator><creatorcontrib>Rajangam, Alex S. ; Gidda, Satinder K. ; Craddock, Christian ; Mullen, Robert T. ; Dyer, John M. ; Eastmond, Peter J.</creatorcontrib><description>Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty adds by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana ) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.208264</identifier><identifier>PMID: 23166353</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>alcohol oxidase ; Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; aldehyde dehydrogenase ; Aldehyde Oxidoreductases - metabolism ; Aldehydes ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis thaliana ; BIOCHEMISTRY AND METABOLISM ; Biological and medical sciences ; Cloning, Molecular ; Cotyledon - genetics ; Cotyledon - metabolism ; Cotyledons ; endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Enzyme Activation ; Enzymes ; Epidermal cells ; Esters - metabolism ; Fatty acids ; Fatty alcohols ; Fatty Alcohols - metabolism ; Food and Agriculture Organization ; Fundamental and applied biological sciences. Psychology ; gene expression ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; genes ; Genes, Plant ; Germination ; green fluorescent protein ; hydrolysis ; jojoba ; leaves ; Magnoliopsida - enzymology ; Magnoliopsida - genetics ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana tabacum ; Oxidation ; Oxidation-Reduction ; Plant Leaves - enzymology ; Plant Leaves - genetics ; Plant physiology and development ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - genetics ; Proteins ; proteomics ; Proteomics - methods ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; seed germination ; seed storage ; Seedlings ; Seeds - genetics ; Seeds - metabolism ; Simmondsia chinensis ; tissues ; tobacco ; wax esters ; Waxes ; Waxes - metabolism</subject><ispartof>Plant physiology (Bethesda), 2013-01, Vol.161 (1), p.72-80</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2014 INIST-CNRS</rights><rights>2013 American Society of Plant Biologists. All Rights Reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-858b6b82fb1cb43c58245b6fc9f986b532006c3ebf363babebc5da6f60d9e0fa3</citedby><cites>FETCH-LOGICAL-c538t-858b6b82fb1cb43c58245b6fc9f986b532006c3ebf363babebc5da6f60d9e0fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41942667$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41942667$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,883,27907,27908,58000,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27062894$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23166353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajangam, Alex S.</creatorcontrib><creatorcontrib>Gidda, Satinder K.</creatorcontrib><creatorcontrib>Craddock, Christian</creatorcontrib><creatorcontrib>Mullen, Robert T.</creatorcontrib><creatorcontrib>Dyer, John M.</creatorcontrib><creatorcontrib>Eastmond, Peter J.</creatorcontrib><title>Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty adds by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana ) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.</description><subject>alcohol oxidase</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>aldehyde dehydrogenase</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Aldehydes</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>Cotyledon - genetics</subject><subject>Cotyledon - metabolism</subject><subject>Cotyledons</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Epidermal cells</subject><subject>Esters - metabolism</subject><subject>Fatty acids</subject><subject>Fatty alcohols</subject><subject>Fatty Alcohols - metabolism</subject><subject>Food and Agriculture Organization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>Germination</subject><subject>green fluorescent protein</subject><subject>hydrolysis</subject><subject>jojoba</subject><subject>leaves</subject><subject>Magnoliopsida - enzymology</subject><subject>Magnoliopsida - genetics</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana tabacum</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - genetics</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Proteins</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>seed germination</subject><subject>seed storage</subject><subject>Seedlings</subject><subject>Seeds - genetics</subject><subject>Seeds - metabolism</subject><subject>Simmondsia chinensis</subject><subject>tissues</subject><subject>tobacco</subject><subject>wax esters</subject><subject>Waxes</subject><subject>Waxes - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxVcIREPhyBHkCxKXLf7YdbwXpCpqC6hVkQBxtMZemzhy1lvboU3_-jraNMCJ07P0fvPkmVdVrwk-IQQ3H8axKD2hWFDePKlmpGW0pm0jnlYzjMsbC9EdVS9SWmGMCSPN8-qIMsI5a9msur0K3uiNh4gWS4igs4nuHrILAwoW5aVB55DzFp16HZbBo-s710_2V8jLW9giGyL6CXf1WSqz6Coo5x8T3IAuTFy7AbLp0ZewCgrQN2P69LJ6ZsEn82qvx9WP87Pvi0_15fXF58XpZa1bJnItWqG4EtQqolXDdCto0ypudWc7wVXZFWOumVGWcaZAGaXbHrjluO8MtsCOq49T7rhRa9NrM-QIXo7RrSFuZQAn_3UGt5S_wm9ZrkOpmJeA9_uAGG42JmW5dkkb72EwYZMk3V2VYNKS_6KEzhnDDW1wQesJ1TGkFI09_IhguetVjmNRKqdeC__27zUO9GORBXi3ByBp8DbCoF36w80xp6LbBb2ZuFXKIR78hnQN5XzOHgAn_rcV</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Rajangam, Alex S.</creator><creator>Gidda, Satinder K.</creator><creator>Craddock, Christian</creator><creator>Mullen, Robert T.</creator><creator>Dyer, John M.</creator><creator>Eastmond, Peter J.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds</title><author>Rajangam, Alex S. ; Gidda, Satinder K. ; Craddock, Christian ; Mullen, Robert T. ; Dyer, John M. ; Eastmond, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-858b6b82fb1cb43c58245b6fc9f986b532006c3ebf363babebc5da6f60d9e0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>alcohol oxidase</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>aldehyde dehydrogenase</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Aldehydes</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>Cotyledon - genetics</topic><topic>Cotyledon - metabolism</topic><topic>Cotyledons</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Epidermal cells</topic><topic>Esters - metabolism</topic><topic>Fatty acids</topic><topic>Fatty alcohols</topic><topic>Fatty Alcohols - metabolism</topic><topic>Food and Agriculture Organization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>Germination</topic><topic>green fluorescent protein</topic><topic>hydrolysis</topic><topic>jojoba</topic><topic>leaves</topic><topic>Magnoliopsida - enzymology</topic><topic>Magnoliopsida - genetics</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana tabacum</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - genetics</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Proteins</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>seed germination</topic><topic>seed storage</topic><topic>Seedlings</topic><topic>Seeds - genetics</topic><topic>Seeds - metabolism</topic><topic>Simmondsia chinensis</topic><topic>tissues</topic><topic>tobacco</topic><topic>wax esters</topic><topic>Waxes</topic><topic>Waxes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajangam, Alex S.</creatorcontrib><creatorcontrib>Gidda, Satinder K.</creatorcontrib><creatorcontrib>Craddock, Christian</creatorcontrib><creatorcontrib>Mullen, Robert T.</creatorcontrib><creatorcontrib>Dyer, John M.</creatorcontrib><creatorcontrib>Eastmond, Peter J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajangam, Alex S.</au><au>Gidda, Satinder K.</au><au>Craddock, Christian</au><au>Mullen, Robert T.</au><au>Dyer, John M.</au><au>Eastmond, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>161</volume><issue>1</issue><spage>72</spage><epage>80</epage><pages>72-80</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty adds by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana ) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>23166353</pmid><doi>10.1104/pp.112.208264</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2013-01, Vol.161 (1), p.72-80
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3532287
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects alcohol oxidase
Alcohol Oxidoreductases - genetics
Alcohol Oxidoreductases - metabolism
aldehyde dehydrogenase
Aldehyde Oxidoreductases - metabolism
Aldehydes
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis thaliana
BIOCHEMISTRY AND METABOLISM
Biological and medical sciences
Cloning, Molecular
Cotyledon - genetics
Cotyledon - metabolism
Cotyledons
endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Enzyme Activation
Enzymes
Epidermal cells
Esters - metabolism
Fatty acids
Fatty alcohols
Fatty Alcohols - metabolism
Food and Agriculture Organization
Fundamental and applied biological sciences. Psychology
gene expression
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Plant
genes
Genes, Plant
Germination
green fluorescent protein
hydrolysis
jojoba
leaves
Magnoliopsida - enzymology
Magnoliopsida - genetics
Nicotiana - enzymology
Nicotiana - genetics
Nicotiana tabacum
Oxidation
Oxidation-Reduction
Plant Leaves - enzymology
Plant Leaves - genetics
Plant physiology and development
Plants, Genetically Modified - enzymology
Plants, Genetically Modified - genetics
Proteins
proteomics
Proteomics - methods
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
seed germination
seed storage
Seedlings
Seeds - genetics
Seeds - metabolism
Simmondsia chinensis
tissues
tobacco
wax esters
Waxes
Waxes - metabolism
title Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Characterization%20of%20the%20Fatty%20Alcohol%20Oxidation%20Pathway%20for%20Wax-Ester%20Mobilization%20in%20Germinated%20Jojoba%20Seeds&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rajangam,%20Alex%20S.&rft.date=2013-01-01&rft.volume=161&rft.issue=1&rft.spage=72&rft.epage=80&rft.pages=72-80&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.208264&rft_dat=%3Cjstor_pubme%3E41942667%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273304240&rft_id=info:pmid/23166353&rft_jstor_id=41942667&rfr_iscdi=true