The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons

Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2013-02, Vol.61 (2), p.240-253
Hauptverfasser: Einheber, Steven, Meng, Xiaosong, Rubin, Marina, Lam, Isabel, Mohandas, Narla, An, Xiuli, Shrager, Peter, Kissil, Joseph, Maurel, Patrice, Salzer, James L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 2
container_start_page 240
container_title Glia
container_volume 61
creator Einheber, Steven
Meng, Xiaosong
Rubin, Marina
Lam, Isabel
Mohandas, Narla
An, Xiuli
Shrager, Peter
Kissil, Joseph
Maurel, Patrice
Salzer, James L.
description Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc.
doi_str_mv 10.1002/glia.22430
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3527682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844488171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</originalsourceid><addsrcrecordid>eNqFkV9v0zAUxS0EYmXwwgdAkXhBk1L8L3bygjQ2FiZV8DI0xIvlJDeN19QutgMrnx6XbhXwALJk69q_c3R9D0LPCZ4TjOnr5Wj0nFLO8AM0I7gqc0KYeIhmuKx4TnhFjtCTEG4wJqmQj9ERZQljRTVDw9UAGZ-Tt1m7jS6sYISox2zjXQRjMw_LadQRQhYT17m1TpfOL7U1P3Q0zmbadlkYQMchIaZdWQghc3223sJobJJ2mb51NjxFj3o9Bnh2dx6jTxfvrs7e54uP9eXZ6SJvC1LhnGLZAe8E9KzsWY9l2VVN05Ul2e1ESNw3HLqqa4ECw01aRd_2rcCkEpBmcIze7H03U7OGhNno9ag23qy13yqnjfrzxZpBLd03xQoqRUmTwas7A---ThCiWpvQwjhqC24KinDGMcVCyv-jVDIqueA4oS__Qm_c5G2aRKJYJVkp5K75kz3VeheCh_7QN8Fql7XaZa1-ZZ3gF7__9IDeh5sAsge-mxG2_7BS9eLy9N4032tMiHB70Gi_UkIyWajrD7X6fH1ef1nURF2wnxsfxQ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1239738674</pqid></control><display><type>article</type><title>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Einheber, Steven ; Meng, Xiaosong ; Rubin, Marina ; Lam, Isabel ; Mohandas, Narla ; An, Xiuli ; Shrager, Peter ; Kissil, Joseph ; Maurel, Patrice ; Salzer, James L.</creator><creatorcontrib>Einheber, Steven ; Meng, Xiaosong ; Rubin, Marina ; Lam, Isabel ; Mohandas, Narla ; An, Xiuli ; Shrager, Peter ; Kissil, Joseph ; Maurel, Patrice ; Salzer, James L.</creatorcontrib><description>Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22430</identifier><identifier>PMID: 23109359</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Ankyrins - metabolism ; axons ; Axons - metabolism ; Axons - ultrastructure ; Cell Adhesion Molecule-1 ; Cell Adhesion Molecules - metabolism ; Cells, Cultured ; cytoskeleton ; Electric Stimulation ; Embryo, Mammalian ; Exploratory Behavior - physiology ; Ganglia, Spinal - cytology ; Immunoglobulins - metabolism ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Microscopy, Electron, Transmission ; Microscopy, Immunoelectron ; myelin ; Myelin Basic Protein - metabolism ; Myelin P0 Protein - metabolism ; Myelin Proteins - metabolism ; Nerve Fibers, Myelinated - metabolism ; Neural Conduction - genetics ; Neural Conduction - physiology ; Neurons - cytology ; nodes of Ranvier ; paranodes ; Ranvier's Nodes - metabolism ; Ranvier's Nodes - ultrastructure ; Schwann Cells - metabolism ; Schwann Cells - ultrastructure ; Spectrin - metabolism</subject><ispartof>Glia, 2013-02, Vol.61 (2), p.240-253</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</citedby><cites>FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23109359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Einheber, Steven</creatorcontrib><creatorcontrib>Meng, Xiaosong</creatorcontrib><creatorcontrib>Rubin, Marina</creatorcontrib><creatorcontrib>Lam, Isabel</creatorcontrib><creatorcontrib>Mohandas, Narla</creatorcontrib><creatorcontrib>An, Xiuli</creatorcontrib><creatorcontrib>Shrager, Peter</creatorcontrib><creatorcontrib>Kissil, Joseph</creatorcontrib><creatorcontrib>Maurel, Patrice</creatorcontrib><creatorcontrib>Salzer, James L.</creatorcontrib><title>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</title><title>Glia</title><addtitle>Glia</addtitle><description>Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Ankyrins - metabolism</subject><subject>axons</subject><subject>Axons - metabolism</subject><subject>Axons - ultrastructure</subject><subject>Cell Adhesion Molecule-1</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cells, Cultured</subject><subject>cytoskeleton</subject><subject>Electric Stimulation</subject><subject>Embryo, Mammalian</subject><subject>Exploratory Behavior - physiology</subject><subject>Ganglia, Spinal - cytology</subject><subject>Immunoglobulins - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microscopy, Immunoelectron</subject><subject>myelin</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Myelin P0 Protein - metabolism</subject><subject>Myelin Proteins - metabolism</subject><subject>Nerve Fibers, Myelinated - metabolism</subject><subject>Neural Conduction - genetics</subject><subject>Neural Conduction - physiology</subject><subject>Neurons - cytology</subject><subject>nodes of Ranvier</subject><subject>paranodes</subject><subject>Ranvier's Nodes - metabolism</subject><subject>Ranvier's Nodes - ultrastructure</subject><subject>Schwann Cells - metabolism</subject><subject>Schwann Cells - ultrastructure</subject><subject>Spectrin - metabolism</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9v0zAUxS0EYmXwwgdAkXhBk1L8L3bygjQ2FiZV8DI0xIvlJDeN19QutgMrnx6XbhXwALJk69q_c3R9D0LPCZ4TjOnr5Wj0nFLO8AM0I7gqc0KYeIhmuKx4TnhFjtCTEG4wJqmQj9ERZQljRTVDw9UAGZ-Tt1m7jS6sYISox2zjXQRjMw_LadQRQhYT17m1TpfOL7U1P3Q0zmbadlkYQMchIaZdWQghc3223sJobJJ2mb51NjxFj3o9Bnh2dx6jTxfvrs7e54uP9eXZ6SJvC1LhnGLZAe8E9KzsWY9l2VVN05Ul2e1ESNw3HLqqa4ECw01aRd_2rcCkEpBmcIze7H03U7OGhNno9ag23qy13yqnjfrzxZpBLd03xQoqRUmTwas7A---ThCiWpvQwjhqC24KinDGMcVCyv-jVDIqueA4oS__Qm_c5G2aRKJYJVkp5K75kz3VeheCh_7QN8Fql7XaZa1-ZZ3gF7__9IDeh5sAsge-mxG2_7BS9eLy9N4032tMiHB70Gi_UkIyWajrD7X6fH1ef1nURF2wnxsfxQ0</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Einheber, Steven</creator><creator>Meng, Xiaosong</creator><creator>Rubin, Marina</creator><creator>Lam, Isabel</creator><creator>Mohandas, Narla</creator><creator>An, Xiuli</creator><creator>Shrager, Peter</creator><creator>Kissil, Joseph</creator><creator>Maurel, Patrice</creator><creator>Salzer, James L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201302</creationdate><title>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</title><author>Einheber, Steven ; Meng, Xiaosong ; Rubin, Marina ; Lam, Isabel ; Mohandas, Narla ; An, Xiuli ; Shrager, Peter ; Kissil, Joseph ; Maurel, Patrice ; Salzer, James L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Ankyrins - metabolism</topic><topic>axons</topic><topic>Axons - metabolism</topic><topic>Axons - ultrastructure</topic><topic>Cell Adhesion Molecule-1</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cells, Cultured</topic><topic>cytoskeleton</topic><topic>Electric Stimulation</topic><topic>Embryo, Mammalian</topic><topic>Exploratory Behavior - physiology</topic><topic>Ganglia, Spinal - cytology</topic><topic>Immunoglobulins - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microscopy, Immunoelectron</topic><topic>myelin</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Myelin P0 Protein - metabolism</topic><topic>Myelin Proteins - metabolism</topic><topic>Nerve Fibers, Myelinated - metabolism</topic><topic>Neural Conduction - genetics</topic><topic>Neural Conduction - physiology</topic><topic>Neurons - cytology</topic><topic>nodes of Ranvier</topic><topic>paranodes</topic><topic>Ranvier's Nodes - metabolism</topic><topic>Ranvier's Nodes - ultrastructure</topic><topic>Schwann Cells - metabolism</topic><topic>Schwann Cells - ultrastructure</topic><topic>Spectrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einheber, Steven</creatorcontrib><creatorcontrib>Meng, Xiaosong</creatorcontrib><creatorcontrib>Rubin, Marina</creatorcontrib><creatorcontrib>Lam, Isabel</creatorcontrib><creatorcontrib>Mohandas, Narla</creatorcontrib><creatorcontrib>An, Xiuli</creatorcontrib><creatorcontrib>Shrager, Peter</creatorcontrib><creatorcontrib>Kissil, Joseph</creatorcontrib><creatorcontrib>Maurel, Patrice</creatorcontrib><creatorcontrib>Salzer, James L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einheber, Steven</au><au>Meng, Xiaosong</au><au>Rubin, Marina</au><au>Lam, Isabel</au><au>Mohandas, Narla</au><au>An, Xiuli</au><au>Shrager, Peter</au><au>Kissil, Joseph</au><au>Maurel, Patrice</au><au>Salzer, James L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2013-02</date><risdate>2013</risdate><volume>61</volume><issue>2</issue><spage>240</spage><epage>253</epage><pages>240-253</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23109359</pmid><doi>10.1002/glia.22430</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2013-02, Vol.61 (2), p.240-253
issn 0894-1491
1098-1136
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3527682
source MEDLINE; Wiley Journals
subjects Animals
Ankyrins - metabolism
axons
Axons - metabolism
Axons - ultrastructure
Cell Adhesion Molecule-1
Cell Adhesion Molecules - metabolism
Cells, Cultured
cytoskeleton
Electric Stimulation
Embryo, Mammalian
Exploratory Behavior - physiology
Ganglia, Spinal - cytology
Immunoglobulins - metabolism
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Microscopy, Electron, Transmission
Microscopy, Immunoelectron
myelin
Myelin Basic Protein - metabolism
Myelin P0 Protein - metabolism
Myelin Proteins - metabolism
Nerve Fibers, Myelinated - metabolism
Neural Conduction - genetics
Neural Conduction - physiology
Neurons - cytology
nodes of Ranvier
paranodes
Ranvier's Nodes - metabolism
Ranvier's Nodes - ultrastructure
Schwann Cells - metabolism
Schwann Cells - ultrastructure
Spectrin - metabolism
title The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%204.1B%20cytoskeletal%20protein%20regulates%20the%20domain%20organization%20and%20sheath%20thickness%20of%20myelinated%20axons&rft.jtitle=Glia&rft.au=Einheber,%20Steven&rft.date=2013-02&rft.volume=61&rft.issue=2&rft.spage=240&rft.epage=253&rft.pages=240-253&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22430&rft_dat=%3Cproquest_pubme%3E2844488171%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1239738674&rft_id=info:pmid/23109359&rfr_iscdi=true