The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons
Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels...
Gespeichert in:
Veröffentlicht in: | Glia 2013-02, Vol.61 (2), p.240-253 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 2 |
container_start_page | 240 |
container_title | Glia |
container_volume | 61 |
creator | Einheber, Steven Meng, Xiaosong Rubin, Marina Lam, Isabel Mohandas, Narla An, Xiuli Shrager, Peter Kissil, Joseph Maurel, Patrice Salzer, James L. |
description | Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/glia.22430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3527682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844488171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</originalsourceid><addsrcrecordid>eNqFkV9v0zAUxS0EYmXwwgdAkXhBk1L8L3bygjQ2FiZV8DI0xIvlJDeN19QutgMrnx6XbhXwALJk69q_c3R9D0LPCZ4TjOnr5Wj0nFLO8AM0I7gqc0KYeIhmuKx4TnhFjtCTEG4wJqmQj9ERZQljRTVDw9UAGZ-Tt1m7jS6sYISox2zjXQRjMw_LadQRQhYT17m1TpfOL7U1P3Q0zmbadlkYQMchIaZdWQghc3223sJobJJ2mb51NjxFj3o9Bnh2dx6jTxfvrs7e54uP9eXZ6SJvC1LhnGLZAe8E9KzsWY9l2VVN05Ul2e1ESNw3HLqqa4ECw01aRd_2rcCkEpBmcIze7H03U7OGhNno9ag23qy13yqnjfrzxZpBLd03xQoqRUmTwas7A---ThCiWpvQwjhqC24KinDGMcVCyv-jVDIqueA4oS__Qm_c5G2aRKJYJVkp5K75kz3VeheCh_7QN8Fql7XaZa1-ZZ3gF7__9IDeh5sAsge-mxG2_7BS9eLy9N4032tMiHB70Gi_UkIyWajrD7X6fH1ef1nURF2wnxsfxQ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1239738674</pqid></control><display><type>article</type><title>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Einheber, Steven ; Meng, Xiaosong ; Rubin, Marina ; Lam, Isabel ; Mohandas, Narla ; An, Xiuli ; Shrager, Peter ; Kissil, Joseph ; Maurel, Patrice ; Salzer, James L.</creator><creatorcontrib>Einheber, Steven ; Meng, Xiaosong ; Rubin, Marina ; Lam, Isabel ; Mohandas, Narla ; An, Xiuli ; Shrager, Peter ; Kissil, Joseph ; Maurel, Patrice ; Salzer, James L.</creatorcontrib><description>Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22430</identifier><identifier>PMID: 23109359</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Ankyrins - metabolism ; axons ; Axons - metabolism ; Axons - ultrastructure ; Cell Adhesion Molecule-1 ; Cell Adhesion Molecules - metabolism ; Cells, Cultured ; cytoskeleton ; Electric Stimulation ; Embryo, Mammalian ; Exploratory Behavior - physiology ; Ganglia, Spinal - cytology ; Immunoglobulins - metabolism ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Microscopy, Electron, Transmission ; Microscopy, Immunoelectron ; myelin ; Myelin Basic Protein - metabolism ; Myelin P0 Protein - metabolism ; Myelin Proteins - metabolism ; Nerve Fibers, Myelinated - metabolism ; Neural Conduction - genetics ; Neural Conduction - physiology ; Neurons - cytology ; nodes of Ranvier ; paranodes ; Ranvier's Nodes - metabolism ; Ranvier's Nodes - ultrastructure ; Schwann Cells - metabolism ; Schwann Cells - ultrastructure ; Spectrin - metabolism</subject><ispartof>Glia, 2013-02, Vol.61 (2), p.240-253</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</citedby><cites>FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23109359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Einheber, Steven</creatorcontrib><creatorcontrib>Meng, Xiaosong</creatorcontrib><creatorcontrib>Rubin, Marina</creatorcontrib><creatorcontrib>Lam, Isabel</creatorcontrib><creatorcontrib>Mohandas, Narla</creatorcontrib><creatorcontrib>An, Xiuli</creatorcontrib><creatorcontrib>Shrager, Peter</creatorcontrib><creatorcontrib>Kissil, Joseph</creatorcontrib><creatorcontrib>Maurel, Patrice</creatorcontrib><creatorcontrib>Salzer, James L.</creatorcontrib><title>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</title><title>Glia</title><addtitle>Glia</addtitle><description>Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Ankyrins - metabolism</subject><subject>axons</subject><subject>Axons - metabolism</subject><subject>Axons - ultrastructure</subject><subject>Cell Adhesion Molecule-1</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cells, Cultured</subject><subject>cytoskeleton</subject><subject>Electric Stimulation</subject><subject>Embryo, Mammalian</subject><subject>Exploratory Behavior - physiology</subject><subject>Ganglia, Spinal - cytology</subject><subject>Immunoglobulins - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microscopy, Immunoelectron</subject><subject>myelin</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Myelin P0 Protein - metabolism</subject><subject>Myelin Proteins - metabolism</subject><subject>Nerve Fibers, Myelinated - metabolism</subject><subject>Neural Conduction - genetics</subject><subject>Neural Conduction - physiology</subject><subject>Neurons - cytology</subject><subject>nodes of Ranvier</subject><subject>paranodes</subject><subject>Ranvier's Nodes - metabolism</subject><subject>Ranvier's Nodes - ultrastructure</subject><subject>Schwann Cells - metabolism</subject><subject>Schwann Cells - ultrastructure</subject><subject>Spectrin - metabolism</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9v0zAUxS0EYmXwwgdAkXhBk1L8L3bygjQ2FiZV8DI0xIvlJDeN19QutgMrnx6XbhXwALJk69q_c3R9D0LPCZ4TjOnr5Wj0nFLO8AM0I7gqc0KYeIhmuKx4TnhFjtCTEG4wJqmQj9ERZQljRTVDw9UAGZ-Tt1m7jS6sYISox2zjXQRjMw_LadQRQhYT17m1TpfOL7U1P3Q0zmbadlkYQMchIaZdWQghc3223sJobJJ2mb51NjxFj3o9Bnh2dx6jTxfvrs7e54uP9eXZ6SJvC1LhnGLZAe8E9KzsWY9l2VVN05Ul2e1ESNw3HLqqa4ECw01aRd_2rcCkEpBmcIze7H03U7OGhNno9ag23qy13yqnjfrzxZpBLd03xQoqRUmTwas7A---ThCiWpvQwjhqC24KinDGMcVCyv-jVDIqueA4oS__Qm_c5G2aRKJYJVkp5K75kz3VeheCh_7QN8Fql7XaZa1-ZZ3gF7__9IDeh5sAsge-mxG2_7BS9eLy9N4032tMiHB70Gi_UkIyWajrD7X6fH1ef1nURF2wnxsfxQ0</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Einheber, Steven</creator><creator>Meng, Xiaosong</creator><creator>Rubin, Marina</creator><creator>Lam, Isabel</creator><creator>Mohandas, Narla</creator><creator>An, Xiuli</creator><creator>Shrager, Peter</creator><creator>Kissil, Joseph</creator><creator>Maurel, Patrice</creator><creator>Salzer, James L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201302</creationdate><title>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</title><author>Einheber, Steven ; Meng, Xiaosong ; Rubin, Marina ; Lam, Isabel ; Mohandas, Narla ; An, Xiuli ; Shrager, Peter ; Kissil, Joseph ; Maurel, Patrice ; Salzer, James L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5190-207de4d6ef38f3f078d9bbd881bbd81670fb4ed9dce2e30b0b05fcfc60196e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Ankyrins - metabolism</topic><topic>axons</topic><topic>Axons - metabolism</topic><topic>Axons - ultrastructure</topic><topic>Cell Adhesion Molecule-1</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cells, Cultured</topic><topic>cytoskeleton</topic><topic>Electric Stimulation</topic><topic>Embryo, Mammalian</topic><topic>Exploratory Behavior - physiology</topic><topic>Ganglia, Spinal - cytology</topic><topic>Immunoglobulins - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microscopy, Immunoelectron</topic><topic>myelin</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Myelin P0 Protein - metabolism</topic><topic>Myelin Proteins - metabolism</topic><topic>Nerve Fibers, Myelinated - metabolism</topic><topic>Neural Conduction - genetics</topic><topic>Neural Conduction - physiology</topic><topic>Neurons - cytology</topic><topic>nodes of Ranvier</topic><topic>paranodes</topic><topic>Ranvier's Nodes - metabolism</topic><topic>Ranvier's Nodes - ultrastructure</topic><topic>Schwann Cells - metabolism</topic><topic>Schwann Cells - ultrastructure</topic><topic>Spectrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einheber, Steven</creatorcontrib><creatorcontrib>Meng, Xiaosong</creatorcontrib><creatorcontrib>Rubin, Marina</creatorcontrib><creatorcontrib>Lam, Isabel</creatorcontrib><creatorcontrib>Mohandas, Narla</creatorcontrib><creatorcontrib>An, Xiuli</creatorcontrib><creatorcontrib>Shrager, Peter</creatorcontrib><creatorcontrib>Kissil, Joseph</creatorcontrib><creatorcontrib>Maurel, Patrice</creatorcontrib><creatorcontrib>Salzer, James L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einheber, Steven</au><au>Meng, Xiaosong</au><au>Rubin, Marina</au><au>Lam, Isabel</au><au>Mohandas, Narla</au><au>An, Xiuli</au><au>Shrager, Peter</au><au>Kissil, Joseph</au><au>Maurel, Patrice</au><au>Salzer, James L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2013-02</date><risdate>2013</risdate><volume>61</volume><issue>2</issue><spage>240</spage><epage>253</epage><pages>240-253</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e., nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno‐EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in 4.1B have preserved paranodes, based on marker staining and EM in contrast to the juxtaparanodes, which are substantially affected in both the PNS and CNS. The juxtaparanodal defect is evident in developing and adult nerves and is neuron‐autonomous based on myelinating cocultures in which wt Schwann cells were grown with 4.1B‐deficient neurons. Despite the juxtaparanodal defect, nerve conduction velocity is unaffected. Preservation of paranodal markers in 4.1B deficient mice is associated with, but not dependent on an increase of 4.1R at the axonal paranodes. Loss of 4.1B in the axon is also associated with reduced levels of the internodal proteins, Necl‐1 and Necl‐2, and of alpha‐2 spectrin. Mutant nerves are modestly hypermyelinated and have increased numbers of Schmidt‐Lanterman incisures, increased expression of 4.1G, and express a residual, truncated isoform of 4.1B. These results demonstrate that 4.1B is a key cytoskeletal scaffold for axonal adhesion molecules expressed in the juxtaparanodal and internodal domains that unexpectedly regulates myelin sheath thickness. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23109359</pmid><doi>10.1002/glia.22430</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2013-02, Vol.61 (2), p.240-253 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3527682 |
source | MEDLINE; Wiley Journals |
subjects | Animals Ankyrins - metabolism axons Axons - metabolism Axons - ultrastructure Cell Adhesion Molecule-1 Cell Adhesion Molecules - metabolism Cells, Cultured cytoskeleton Electric Stimulation Embryo, Mammalian Exploratory Behavior - physiology Ganglia, Spinal - cytology Immunoglobulins - metabolism Membrane Proteins - metabolism Mice Mice, Inbred C57BL Mice, Knockout Microfilament Proteins - genetics Microfilament Proteins - metabolism Microscopy, Electron, Transmission Microscopy, Immunoelectron myelin Myelin Basic Protein - metabolism Myelin P0 Protein - metabolism Myelin Proteins - metabolism Nerve Fibers, Myelinated - metabolism Neural Conduction - genetics Neural Conduction - physiology Neurons - cytology nodes of Ranvier paranodes Ranvier's Nodes - metabolism Ranvier's Nodes - ultrastructure Schwann Cells - metabolism Schwann Cells - ultrastructure Spectrin - metabolism |
title | The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%204.1B%20cytoskeletal%20protein%20regulates%20the%20domain%20organization%20and%20sheath%20thickness%20of%20myelinated%20axons&rft.jtitle=Glia&rft.au=Einheber,%20Steven&rft.date=2013-02&rft.volume=61&rft.issue=2&rft.spage=240&rft.epage=253&rft.pages=240-253&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22430&rft_dat=%3Cproquest_pubme%3E2844488171%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1239738674&rft_id=info:pmid/23109359&rfr_iscdi=true |