Dynamic features of homodimer interfaces calculated by normal‐mode analysis
Knowledge of the dynamic features of protein interfaces is necessary for a deeper understanding of protein–protein interactions. We performed normal‐mode analysis (NMA) of 517 nonredundant homodimers and their protomers to characterize dimer interfaces from a dynamic perspective. The motion vector c...
Gespeichert in:
Veröffentlicht in: | Protein science 2012-10, Vol.21 (10), p.1503-1513 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1513 |
---|---|
container_issue | 10 |
container_start_page | 1503 |
container_title | Protein science |
container_volume | 21 |
creator | Tsuchiya, Yuko Kinoshita, Kengo Endo, Shigeru Wako, Hiroshi |
description | Knowledge of the dynamic features of protein interfaces is necessary for a deeper understanding of protein–protein interactions. We performed normal‐mode analysis (NMA) of 517 nonredundant homodimers and their protomers to characterize dimer interfaces from a dynamic perspective. The motion vector calculated by NMA for each atom of a dimer was decomposed into internal and external motion vectors in individual component subunits, followed by the averaging of time‐averaged correlations between these vectors over atom pairs in the interface. This averaged correlation coefficient (ACC) was defined for various combinations of vectors and investigated in detail. ACCs decrease exponentially with an increasing interface area and r‐value, that is, interface area divided by the entire subunit surface area. As the r‐value reflects the nature of dimer formation, the result suggests that both the interface area and the nature of dimer formation are responsible for the dynamic properties of dimer interfaces. For interfaces with small or medium r‐values and without intersubunit entanglements, ACCs are found to increase on dimer formation when compared with those in the protomer state. In contrast, ACCs do not increase on dimer formation for interfaces with large r‐values and intersubunit entanglements such as in interwinding dimers. Furthermore, relationships between ACCs for intrasubunit atom pairs and for intersubunit atom pairs are found to significantly differ between interwinding and noninterwinding dimers for external motions. External motions are considered as an important factor for characterizing dimer interfaces. |
doi_str_mv | 10.1002/pro.2140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3526992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069209197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5040-e5772e4601c5ef0d1675bf2d6b1cf20682a3b0e8db5abb6d70ccb1c850f53c873</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy1ExS4FiSdAkbhwyXbsJI5zQULbFioVFSGQuFmOM2ZdOfFiJ1S59RF4Rp4Eb3cpfyRO1ng-fTOjHyHPKKwoADvZBr9itIQHZElL3uSi4Z8fkiU0nOai4GJBHsd4DQAlZcUjsmBMiBqKcknenc6D6q3ODKpxChgzb7KN731newyZHUYMRun0r5XTk1Mjdlk7Z4MPvXI_br8nEjM1KDdHG5-QI6NcxKeH95h8Oj_7uH6bX169uVi_vsx1BSXkWNU1w5ID1RUa6Civq9awjrdUGwZcMFW0gKJrK9W2vKtB69QSFZiq0KIujsmrvXc7tT12GocxKCe3wfYqzNIrK__uDHYjv_hvsqgYbxqWBC8PguC_ThhH2duo0Tk1oJ-ipMAbBg1tdrNe_INe-ymkgxNVcy5KKkD8FurgYwxo7pehIHcZpdrLXUYJff7n8vfgr1ASkO-BG-tw_q9Ivv9wdSf8CRcsnT4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766841808</pqid></control><display><type>article</type><title>Dynamic features of homodimer interfaces calculated by normal‐mode analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsuchiya, Yuko ; Kinoshita, Kengo ; Endo, Shigeru ; Wako, Hiroshi</creator><creatorcontrib>Tsuchiya, Yuko ; Kinoshita, Kengo ; Endo, Shigeru ; Wako, Hiroshi</creatorcontrib><description>Knowledge of the dynamic features of protein interfaces is necessary for a deeper understanding of protein–protein interactions. We performed normal‐mode analysis (NMA) of 517 nonredundant homodimers and their protomers to characterize dimer interfaces from a dynamic perspective. The motion vector calculated by NMA for each atom of a dimer was decomposed into internal and external motion vectors in individual component subunits, followed by the averaging of time‐averaged correlations between these vectors over atom pairs in the interface. This averaged correlation coefficient (ACC) was defined for various combinations of vectors and investigated in detail. ACCs decrease exponentially with an increasing interface area and r‐value, that is, interface area divided by the entire subunit surface area. As the r‐value reflects the nature of dimer formation, the result suggests that both the interface area and the nature of dimer formation are responsible for the dynamic properties of dimer interfaces. For interfaces with small or medium r‐values and without intersubunit entanglements, ACCs are found to increase on dimer formation when compared with those in the protomer state. In contrast, ACCs do not increase on dimer formation for interfaces with large r‐values and intersubunit entanglements such as in interwinding dimers. Furthermore, relationships between ACCs for intrasubunit atom pairs and for intersubunit atom pairs are found to significantly differ between interwinding and noninterwinding dimers for external motions. External motions are considered as an important factor for characterizing dimer interfaces.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.2140</identifier><identifier>PMID: 22887034</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Computational Biology - methods ; correlative atomic fluctuations ; Crystallography, X-Ray ; Databases, Protein ; external motion ; homodimer interfaces ; interface dynamics ; internal motion ; interwinding interfaces ; Models, Molecular ; Nonlinear Dynamics ; normal‐mode analysis ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping - methods ; Protein Multimerization ; Protein Subunits ; Proteins ; Proteins - chemistry ; protein‐protein interaction</subject><ispartof>Protein science, 2012-10, Vol.21 (10), p.1503-1513</ispartof><rights>Copyright © 2012 The Protein Society</rights><rights>Copyright © 2012 The Protein Society.</rights><rights>Copyright © 2012 The Protein Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5040-e5772e4601c5ef0d1675bf2d6b1cf20682a3b0e8db5abb6d70ccb1c850f53c873</citedby><cites>FETCH-LOGICAL-c5040-e5772e4601c5ef0d1675bf2d6b1cf20682a3b0e8db5abb6d70ccb1c850f53c873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526992/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526992/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22887034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuchiya, Yuko</creatorcontrib><creatorcontrib>Kinoshita, Kengo</creatorcontrib><creatorcontrib>Endo, Shigeru</creatorcontrib><creatorcontrib>Wako, Hiroshi</creatorcontrib><title>Dynamic features of homodimer interfaces calculated by normal‐mode analysis</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Knowledge of the dynamic features of protein interfaces is necessary for a deeper understanding of protein–protein interactions. We performed normal‐mode analysis (NMA) of 517 nonredundant homodimers and their protomers to characterize dimer interfaces from a dynamic perspective. The motion vector calculated by NMA for each atom of a dimer was decomposed into internal and external motion vectors in individual component subunits, followed by the averaging of time‐averaged correlations between these vectors over atom pairs in the interface. This averaged correlation coefficient (ACC) was defined for various combinations of vectors and investigated in detail. ACCs decrease exponentially with an increasing interface area and r‐value, that is, interface area divided by the entire subunit surface area. As the r‐value reflects the nature of dimer formation, the result suggests that both the interface area and the nature of dimer formation are responsible for the dynamic properties of dimer interfaces. For interfaces with small or medium r‐values and without intersubunit entanglements, ACCs are found to increase on dimer formation when compared with those in the protomer state. In contrast, ACCs do not increase on dimer formation for interfaces with large r‐values and intersubunit entanglements such as in interwinding dimers. Furthermore, relationships between ACCs for intrasubunit atom pairs and for intersubunit atom pairs are found to significantly differ between interwinding and noninterwinding dimers for external motions. External motions are considered as an important factor for characterizing dimer interfaces.</description><subject>Computational Biology - methods</subject><subject>correlative atomic fluctuations</subject><subject>Crystallography, X-Ray</subject><subject>Databases, Protein</subject><subject>external motion</subject><subject>homodimer interfaces</subject><subject>interface dynamics</subject><subject>internal motion</subject><subject>interwinding interfaces</subject><subject>Models, Molecular</subject><subject>Nonlinear Dynamics</subject><subject>normal‐mode analysis</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Multimerization</subject><subject>Protein Subunits</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>protein‐protein interaction</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQhy1ExS4FiSdAkbhwyXbsJI5zQULbFioVFSGQuFmOM2ZdOfFiJ1S59RF4Rp4Eb3cpfyRO1ng-fTOjHyHPKKwoADvZBr9itIQHZElL3uSi4Z8fkiU0nOai4GJBHsd4DQAlZcUjsmBMiBqKcknenc6D6q3ODKpxChgzb7KN731newyZHUYMRun0r5XTk1Mjdlk7Z4MPvXI_br8nEjM1KDdHG5-QI6NcxKeH95h8Oj_7uH6bX169uVi_vsx1BSXkWNU1w5ID1RUa6Civq9awjrdUGwZcMFW0gKJrK9W2vKtB69QSFZiq0KIujsmrvXc7tT12GocxKCe3wfYqzNIrK__uDHYjv_hvsqgYbxqWBC8PguC_ThhH2duo0Tk1oJ-ipMAbBg1tdrNe_INe-ymkgxNVcy5KKkD8FurgYwxo7pehIHcZpdrLXUYJff7n8vfgr1ASkO-BG-tw_q9Ivv9wdSf8CRcsnT4</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Tsuchiya, Yuko</creator><creator>Kinoshita, Kengo</creator><creator>Endo, Shigeru</creator><creator>Wako, Hiroshi</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201210</creationdate><title>Dynamic features of homodimer interfaces calculated by normal‐mode analysis</title><author>Tsuchiya, Yuko ; Kinoshita, Kengo ; Endo, Shigeru ; Wako, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5040-e5772e4601c5ef0d1675bf2d6b1cf20682a3b0e8db5abb6d70ccb1c850f53c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational Biology - methods</topic><topic>correlative atomic fluctuations</topic><topic>Crystallography, X-Ray</topic><topic>Databases, Protein</topic><topic>external motion</topic><topic>homodimer interfaces</topic><topic>interface dynamics</topic><topic>internal motion</topic><topic>interwinding interfaces</topic><topic>Models, Molecular</topic><topic>Nonlinear Dynamics</topic><topic>normal‐mode analysis</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Multimerization</topic><topic>Protein Subunits</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>protein‐protein interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuchiya, Yuko</creatorcontrib><creatorcontrib>Kinoshita, Kengo</creatorcontrib><creatorcontrib>Endo, Shigeru</creatorcontrib><creatorcontrib>Wako, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuchiya, Yuko</au><au>Kinoshita, Kengo</au><au>Endo, Shigeru</au><au>Wako, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic features of homodimer interfaces calculated by normal‐mode analysis</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2012-10</date><risdate>2012</risdate><volume>21</volume><issue>10</issue><spage>1503</spage><epage>1513</epage><pages>1503-1513</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Knowledge of the dynamic features of protein interfaces is necessary for a deeper understanding of protein–protein interactions. We performed normal‐mode analysis (NMA) of 517 nonredundant homodimers and their protomers to characterize dimer interfaces from a dynamic perspective. The motion vector calculated by NMA for each atom of a dimer was decomposed into internal and external motion vectors in individual component subunits, followed by the averaging of time‐averaged correlations between these vectors over atom pairs in the interface. This averaged correlation coefficient (ACC) was defined for various combinations of vectors and investigated in detail. ACCs decrease exponentially with an increasing interface area and r‐value, that is, interface area divided by the entire subunit surface area. As the r‐value reflects the nature of dimer formation, the result suggests that both the interface area and the nature of dimer formation are responsible for the dynamic properties of dimer interfaces. For interfaces with small or medium r‐values and without intersubunit entanglements, ACCs are found to increase on dimer formation when compared with those in the protomer state. In contrast, ACCs do not increase on dimer formation for interfaces with large r‐values and intersubunit entanglements such as in interwinding dimers. Furthermore, relationships between ACCs for intrasubunit atom pairs and for intersubunit atom pairs are found to significantly differ between interwinding and noninterwinding dimers for external motions. External motions are considered as an important factor for characterizing dimer interfaces.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22887034</pmid><doi>10.1002/pro.2140</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2012-10, Vol.21 (10), p.1503-1513 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3526992 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Computational Biology - methods correlative atomic fluctuations Crystallography, X-Ray Databases, Protein external motion homodimer interfaces interface dynamics internal motion interwinding interfaces Models, Molecular Nonlinear Dynamics normal‐mode analysis Protein Binding Protein Conformation Protein Interaction Mapping - methods Protein Multimerization Protein Subunits Proteins Proteins - chemistry protein‐protein interaction |
title | Dynamic features of homodimer interfaces calculated by normal‐mode analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20features%20of%20homodimer%20interfaces%20calculated%20by%20normal%E2%80%90mode%20analysis&rft.jtitle=Protein%20science&rft.au=Tsuchiya,%20Yuko&rft.date=2012-10&rft.volume=21&rft.issue=10&rft.spage=1503&rft.epage=1513&rft.pages=1503-1513&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.2140&rft_dat=%3Cproquest_pubme%3E1069209197%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766841808&rft_id=info:pmid/22887034&rfr_iscdi=true |