Electrostatic rate enhancement and transient complex of protein-protein association

The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ∼105–106 M−1 s−1. Proteins with higher association rates generally have complementary electrostatic surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.320-335
Hauptverfasser: Alsallaq, Ramzi, Zhou, Huan-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 1
container_start_page 320
container_title Proteins, structure, function, and bioinformatics
container_volume 71
creator Alsallaq, Ramzi
Zhou, Huan-Xiang
description The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ∼105–106 M−1 s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion‐limited association rate can be accurately modeled by $k_{\bf D}$ = $k_{D}0\ {exp} ( - \langle U_{el} \rangle^{\star}/k_{B} T),$ where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, 〈Uel〉☆ is the average electrostatic interaction energy in a “transient‐complex” ensemble, and kBT is the thermal energy. The transient‐complex ensemble separates the bound state from the unbound state. Predictions of the transient‐complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson–Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient‐complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. Proteins 2008. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.21679
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3526769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70334156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5229-626f05d4351570ed58deee86c1b02c2036723b8dfe95b8cac9331a121cbb4c553</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq0KVNLQCz8A7YlDpQV_xPb6goQQhVYRUJqqR8vrnS0uu3awnQL_ng0JX5eeRpafeWb0DkI7BO8TjOnBPIa8T4mQ6gMaEaxkiQmbbKARripZMl7xLfQppb8YY6GY-Ii2iFSMKqpG6OdJBzbHkLLJzhbRZCjAXxtvoQefC-ObIkfjk1u-bOjnHdwXoS2WQ8H5cl0Lk1KwbpAEv402W9Ml-LyuY_Tr68ns-KycXpx-Oz6alpZTqkpBRYt5M2GccImh4VUDAJWwpMbUUsyEpKyumhYUrytrrGKMGEKJreuJ5ZyN0eHKO1_UPTR22DCaTs-j60180ME4_f7Hu2v9J_zTjFMhhyjGaG8tiOF2ASnr3iULXWc8hEXSEjM2IVwM4JcVaIekUoT2ZQjBenkDvYxBP91ggHffrvWKrkMfALIC7lwHD_9R6curi9mztFz1uJTh_qXHxBstJJNc_z4_1d-nl2d0ps71D_YIddqkRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70334156</pqid></control><display><type>article</type><title>Electrostatic rate enhancement and transient complex of protein-protein association</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Alsallaq, Ramzi ; Zhou, Huan-Xiang</creator><creatorcontrib>Alsallaq, Ramzi ; Zhou, Huan-Xiang</creatorcontrib><description>The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ∼105–106 M−1 s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion‐limited association rate can be accurately modeled by $k_{\bf D}$ = $k_{D}0\ {exp} ( - \langle U_{el} \rangle^{\star}/k_{B} T),$ where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, 〈Uel〉☆ is the average electrostatic interaction energy in a “transient‐complex” ensemble, and kBT is the thermal energy. The transient‐complex ensemble separates the bound state from the unbound state. Predictions of the transient‐complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson–Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient‐complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. Proteins 2008. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.21679</identifier><identifier>PMID: 17932929</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Diffusion ; diffusion control ; electrostatic rate enhancement ; Kinetics ; Models, Theoretical ; Poisson-Boltzmann equation ; protein association ; Protein Binding ; Proteins - chemistry ; Proteins - metabolism ; Static Electricity ; transient complex</subject><ispartof>Proteins, structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.320-335</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5229-626f05d4351570ed58deee86c1b02c2036723b8dfe95b8cac9331a121cbb4c553</citedby><cites>FETCH-LOGICAL-c5229-626f05d4351570ed58deee86c1b02c2036723b8dfe95b8cac9331a121cbb4c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.21679$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.21679$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17932929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alsallaq, Ramzi</creatorcontrib><creatorcontrib>Zhou, Huan-Xiang</creatorcontrib><title>Electrostatic rate enhancement and transient complex of protein-protein association</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ∼105–106 M−1 s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion‐limited association rate can be accurately modeled by $k_{\bf D}$ = $k_{D}0\ {exp} ( - \langle U_{el} \rangle^{\star}/k_{B} T),$ where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, 〈Uel〉☆ is the average electrostatic interaction energy in a “transient‐complex” ensemble, and kBT is the thermal energy. The transient‐complex ensemble separates the bound state from the unbound state. Predictions of the transient‐complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson–Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient‐complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. Proteins 2008. © 2007 Wiley‐Liss, Inc.</description><subject>Diffusion</subject><subject>diffusion control</subject><subject>electrostatic rate enhancement</subject><subject>Kinetics</subject><subject>Models, Theoretical</subject><subject>Poisson-Boltzmann equation</subject><subject>protein association</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Static Electricity</subject><subject>transient complex</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PGzEQhq0KVNLQCz8A7YlDpQV_xPb6goQQhVYRUJqqR8vrnS0uu3awnQL_ng0JX5eeRpafeWb0DkI7BO8TjOnBPIa8T4mQ6gMaEaxkiQmbbKARripZMl7xLfQppb8YY6GY-Ii2iFSMKqpG6OdJBzbHkLLJzhbRZCjAXxtvoQefC-ObIkfjk1u-bOjnHdwXoS2WQ8H5cl0Lk1KwbpAEv402W9Ml-LyuY_Tr68ns-KycXpx-Oz6alpZTqkpBRYt5M2GccImh4VUDAJWwpMbUUsyEpKyumhYUrytrrGKMGEKJreuJ5ZyN0eHKO1_UPTR22DCaTs-j60180ME4_f7Hu2v9J_zTjFMhhyjGaG8tiOF2ASnr3iULXWc8hEXSEjM2IVwM4JcVaIekUoT2ZQjBenkDvYxBP91ggHffrvWKrkMfALIC7lwHD_9R6curi9mztFz1uJTh_qXHxBstJJNc_z4_1d-nl2d0ps71D_YIddqkRw</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Alsallaq, Ramzi</creator><creator>Zhou, Huan-Xiang</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200804</creationdate><title>Electrostatic rate enhancement and transient complex of protein-protein association</title><author>Alsallaq, Ramzi ; Zhou, Huan-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5229-626f05d4351570ed58deee86c1b02c2036723b8dfe95b8cac9331a121cbb4c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Diffusion</topic><topic>diffusion control</topic><topic>electrostatic rate enhancement</topic><topic>Kinetics</topic><topic>Models, Theoretical</topic><topic>Poisson-Boltzmann equation</topic><topic>protein association</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Static Electricity</topic><topic>transient complex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsallaq, Ramzi</creatorcontrib><creatorcontrib>Zhou, Huan-Xiang</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsallaq, Ramzi</au><au>Zhou, Huan-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic rate enhancement and transient complex of protein-protein association</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2008-04</date><risdate>2008</risdate><volume>71</volume><issue>1</issue><spage>320</spage><epage>335</epage><pages>320-335</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ∼105–106 M−1 s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion‐limited association rate can be accurately modeled by $k_{\bf D}$ = $k_{D}0\ {exp} ( - \langle U_{el} \rangle^{\star}/k_{B} T),$ where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, 〈Uel〉☆ is the average electrostatic interaction energy in a “transient‐complex” ensemble, and kBT is the thermal energy. The transient‐complex ensemble separates the bound state from the unbound state. Predictions of the transient‐complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson–Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient‐complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. Proteins 2008. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17932929</pmid><doi>10.1002/prot.21679</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.320-335
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3526769
source MEDLINE; Access via Wiley Online Library
subjects Diffusion
diffusion control
electrostatic rate enhancement
Kinetics
Models, Theoretical
Poisson-Boltzmann equation
protein association
Protein Binding
Proteins - chemistry
Proteins - metabolism
Static Electricity
transient complex
title Electrostatic rate enhancement and transient complex of protein-protein association
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20rate%20enhancement%20and%20transient%20complex%20of%20protein-protein%20association&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Alsallaq,%20Ramzi&rft.date=2008-04&rft.volume=71&rft.issue=1&rft.spage=320&rft.epage=335&rft.pages=320-335&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.21679&rft_dat=%3Cproquest_pubme%3E70334156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70334156&rft_id=info:pmid/17932929&rfr_iscdi=true