Sensing of Commensal Organisms by the Intracellular Sensor NOD1 Mediates Experimental Pancreatitis

The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2012-08, Vol.37 (2), p.326-338
Hauptverfasser: Tsuji, Yoshihisa, Watanabe, Tomohiro, Kudo, Masatoshi, Arai, Hidenori, Strober, Warren, Chiba, Tsutomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 2
container_start_page 326
container_title Immunity (Cambridge, Mass.)
container_volume 37
creator Tsuji, Yoshihisa
Watanabe, Tomohiro
Kudo, Masatoshi
Arai, Hidenori
Strober, Warren
Chiba, Tsutomu
description The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecystokinin receptor agonist) administration depends on NOD1 stimulation by gut microflora. To analyze this NOD1 activity, we induced pancreatitis by simultaneous administration of a low dose of cerulein (that does not itself induce pancreatitis) and FK156, an activator of NOD1 that mimics the effect of gut bacteria that have breached the mucosal barrier. The pancreatitis was dependent on acinar cell production of the chemokine MCP-1 and the intrapancreatic influx of CCR2+ inflammatory cells. Moreover, MCP-1 production involved activation of the transcription factors NF-κB and STAT3, each requiring complementary NOD1 and cerulein signaling. These studies indicate that gut commensals enable noninfectious pancreatic inflammation via NOD1 signaling in pancreatic acinar cells. [Display omitted] ► NOD1 activation enhances a cholecystokinin receptor agonist-induced pancreatitis ► The development of pancreatitis depends on the interaction between CCR2 and MCP-1 ► Activation of STAT3 and NF-κB is responsible for the development of pancreatitis ► Commensal organisms facilitate pancreatic inflammation via NOD1 signaling
doi_str_mv 10.1016/j.immuni.2012.05.024
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3523885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S107476131200324X</els_id><sourcerecordid>1113217071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-a7de43e0695f782be329eda7c7ee1fbe5b7741519e65dc5c050ef2065fa6197b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwBghZYsMmwdeJ43iDhKYFKhUGCVhbjnMz9SixB9up6NvjaEr5WbCyLZ97fI6_ongOtAIK7et9Zed5cbZiFFhFeUVZ86A4BSpF2UBHH6570ZSihfqkeBLjnlJouKSPixPGJGWsrk-L_gu6aN2O-JFs_Dznk57INuy0s3GOpL8l6RrJpUtBG5ymZdKBrDM-kE_bcyAfcbA6YSQXPw4YbDZI2eCzdiagTjbZ-LR4NOop4rO79az49u7i6-ZDebV9f7l5e1WaHCqVWgzY1EhbyUfRsR5rJnHQwghEGHvkvRANcJDY8sFwQznFkdGWj7oFKfr6rHhz9D0s_YyDwTXzpA45lA63ymur_r5x9lrt_I2qOau7jmeDV3cGwX9fMCY127iW1g79EhUA1AwEFZClL_-R7v0SXK6noGVSyoZ3NKuao8oEH2PA8T4MULVCVHt1hKhWiIpylSHmsRd_Frkf-kXtd1PM33ljMahoLDqTUQQ0SQ3e_v-FnwH9sR4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629994580</pqid></control><display><type>article</type><title>Sensing of Commensal Organisms by the Intracellular Sensor NOD1 Mediates Experimental Pancreatitis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tsuji, Yoshihisa ; Watanabe, Tomohiro ; Kudo, Masatoshi ; Arai, Hidenori ; Strober, Warren ; Chiba, Tsutomu</creator><creatorcontrib>Tsuji, Yoshihisa ; Watanabe, Tomohiro ; Kudo, Masatoshi ; Arai, Hidenori ; Strober, Warren ; Chiba, Tsutomu</creatorcontrib><description>The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecystokinin receptor agonist) administration depends on NOD1 stimulation by gut microflora. To analyze this NOD1 activity, we induced pancreatitis by simultaneous administration of a low dose of cerulein (that does not itself induce pancreatitis) and FK156, an activator of NOD1 that mimics the effect of gut bacteria that have breached the mucosal barrier. The pancreatitis was dependent on acinar cell production of the chemokine MCP-1 and the intrapancreatic influx of CCR2+ inflammatory cells. Moreover, MCP-1 production involved activation of the transcription factors NF-κB and STAT3, each requiring complementary NOD1 and cerulein signaling. These studies indicate that gut commensals enable noninfectious pancreatic inflammation via NOD1 signaling in pancreatic acinar cells. [Display omitted] ► NOD1 activation enhances a cholecystokinin receptor agonist-induced pancreatitis ► The development of pancreatitis depends on the interaction between CCR2 and MCP-1 ► Activation of STAT3 and NF-κB is responsible for the development of pancreatitis ► Commensal organisms facilitate pancreatic inflammation via NOD1 signaling</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2012.05.024</identifier><identifier>PMID: 22902233</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylmuramyl-Alanyl-Isoglutamine - adverse effects ; Acinar cells ; Acinar Cells - immunology ; Animals ; Antibiotics ; Bacteria - immunology ; Ceruletide - adverse effects ; Chemokine CCL2 - biosynthesis ; Chemokine CCL2 - immunology ; Chemokines ; Cholecystokinin receptors ; Commensals ; Diaminopimelic Acid - adverse effects ; Diaminopimelic Acid - analogs &amp; derivatives ; Digestive tract ; Enzymes ; Experiments ; Humans ; Immunity, Mucosal - immunology ; Inflammation ; Metabolic disorders ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microflora ; Monocyte chemoattractant protein 1 ; Mortality ; Mucosa ; Mucous Membrane - immunology ; Mucous Membrane - microbiology ; NF- Kappa B protein ; NF-kappa B - metabolism ; Nod1 protein ; Nod1 Signaling Adaptor Protein - immunology ; Nod1 Signaling Adaptor Protein - metabolism ; Organisms ; Pancreas ; Pancreatitis ; Pancreatitis - chemically induced ; Pancreatitis - immunology ; Pathogens ; Receptors, CCR2 - biosynthesis ; Receptors, CCR2 - immunology ; Rodents ; Signal Transduction - immunology ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; Transcription factors</subject><ispartof>Immunity (Cambridge, Mass.), 2012-08, Vol.37 (2), p.326-338</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 24, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-a7de43e0695f782be329eda7c7ee1fbe5b7741519e65dc5c050ef2065fa6197b3</citedby><cites>FETCH-LOGICAL-c590t-a7de43e0695f782be329eda7c7ee1fbe5b7741519e65dc5c050ef2065fa6197b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.immuni.2012.05.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22902233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuji, Yoshihisa</creatorcontrib><creatorcontrib>Watanabe, Tomohiro</creatorcontrib><creatorcontrib>Kudo, Masatoshi</creatorcontrib><creatorcontrib>Arai, Hidenori</creatorcontrib><creatorcontrib>Strober, Warren</creatorcontrib><creatorcontrib>Chiba, Tsutomu</creatorcontrib><title>Sensing of Commensal Organisms by the Intracellular Sensor NOD1 Mediates Experimental Pancreatitis</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecystokinin receptor agonist) administration depends on NOD1 stimulation by gut microflora. To analyze this NOD1 activity, we induced pancreatitis by simultaneous administration of a low dose of cerulein (that does not itself induce pancreatitis) and FK156, an activator of NOD1 that mimics the effect of gut bacteria that have breached the mucosal barrier. The pancreatitis was dependent on acinar cell production of the chemokine MCP-1 and the intrapancreatic influx of CCR2+ inflammatory cells. Moreover, MCP-1 production involved activation of the transcription factors NF-κB and STAT3, each requiring complementary NOD1 and cerulein signaling. These studies indicate that gut commensals enable noninfectious pancreatic inflammation via NOD1 signaling in pancreatic acinar cells. [Display omitted] ► NOD1 activation enhances a cholecystokinin receptor agonist-induced pancreatitis ► The development of pancreatitis depends on the interaction between CCR2 and MCP-1 ► Activation of STAT3 and NF-κB is responsible for the development of pancreatitis ► Commensal organisms facilitate pancreatic inflammation via NOD1 signaling</description><subject>Acetylmuramyl-Alanyl-Isoglutamine - adverse effects</subject><subject>Acinar cells</subject><subject>Acinar Cells - immunology</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Bacteria - immunology</subject><subject>Ceruletide - adverse effects</subject><subject>Chemokine CCL2 - biosynthesis</subject><subject>Chemokine CCL2 - immunology</subject><subject>Chemokines</subject><subject>Cholecystokinin receptors</subject><subject>Commensals</subject><subject>Diaminopimelic Acid - adverse effects</subject><subject>Diaminopimelic Acid - analogs &amp; derivatives</subject><subject>Digestive tract</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Humans</subject><subject>Immunity, Mucosal - immunology</subject><subject>Inflammation</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microflora</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Mortality</subject><subject>Mucosa</subject><subject>Mucous Membrane - immunology</subject><subject>Mucous Membrane - microbiology</subject><subject>NF- Kappa B protein</subject><subject>NF-kappa B - metabolism</subject><subject>Nod1 protein</subject><subject>Nod1 Signaling Adaptor Protein - immunology</subject><subject>Nod1 Signaling Adaptor Protein - metabolism</subject><subject>Organisms</subject><subject>Pancreas</subject><subject>Pancreatitis</subject><subject>Pancreatitis - chemically induced</subject><subject>Pancreatitis - immunology</subject><subject>Pathogens</subject><subject>Receptors, CCR2 - biosynthesis</subject><subject>Receptors, CCR2 - immunology</subject><subject>Rodents</subject><subject>Signal Transduction - immunology</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Transcription factors</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwBghZYsMmwdeJ43iDhKYFKhUGCVhbjnMz9SixB9up6NvjaEr5WbCyLZ97fI6_ongOtAIK7et9Zed5cbZiFFhFeUVZ86A4BSpF2UBHH6570ZSihfqkeBLjnlJouKSPixPGJGWsrk-L_gu6aN2O-JFs_Dznk57INuy0s3GOpL8l6RrJpUtBG5ymZdKBrDM-kE_bcyAfcbA6YSQXPw4YbDZI2eCzdiagTjbZ-LR4NOop4rO79az49u7i6-ZDebV9f7l5e1WaHCqVWgzY1EhbyUfRsR5rJnHQwghEGHvkvRANcJDY8sFwQznFkdGWj7oFKfr6rHhz9D0s_YyDwTXzpA45lA63ymur_r5x9lrt_I2qOau7jmeDV3cGwX9fMCY127iW1g79EhUA1AwEFZClL_-R7v0SXK6noGVSyoZ3NKuao8oEH2PA8T4MULVCVHt1hKhWiIpylSHmsRd_Frkf-kXtd1PM33ljMahoLDqTUQQ0SQ3e_v-FnwH9sR4</recordid><startdate>20120824</startdate><enddate>20120824</enddate><creator>Tsuji, Yoshihisa</creator><creator>Watanabe, Tomohiro</creator><creator>Kudo, Masatoshi</creator><creator>Arai, Hidenori</creator><creator>Strober, Warren</creator><creator>Chiba, Tsutomu</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120824</creationdate><title>Sensing of Commensal Organisms by the Intracellular Sensor NOD1 Mediates Experimental Pancreatitis</title><author>Tsuji, Yoshihisa ; Watanabe, Tomohiro ; Kudo, Masatoshi ; Arai, Hidenori ; Strober, Warren ; Chiba, Tsutomu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-a7de43e0695f782be329eda7c7ee1fbe5b7741519e65dc5c050ef2065fa6197b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetylmuramyl-Alanyl-Isoglutamine - adverse effects</topic><topic>Acinar cells</topic><topic>Acinar Cells - immunology</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Bacteria - immunology</topic><topic>Ceruletide - adverse effects</topic><topic>Chemokine CCL2 - biosynthesis</topic><topic>Chemokine CCL2 - immunology</topic><topic>Chemokines</topic><topic>Cholecystokinin receptors</topic><topic>Commensals</topic><topic>Diaminopimelic Acid - adverse effects</topic><topic>Diaminopimelic Acid - analogs &amp; derivatives</topic><topic>Digestive tract</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Humans</topic><topic>Immunity, Mucosal - immunology</topic><topic>Inflammation</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microflora</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Mortality</topic><topic>Mucosa</topic><topic>Mucous Membrane - immunology</topic><topic>Mucous Membrane - microbiology</topic><topic>NF- Kappa B protein</topic><topic>NF-kappa B - metabolism</topic><topic>Nod1 protein</topic><topic>Nod1 Signaling Adaptor Protein - immunology</topic><topic>Nod1 Signaling Adaptor Protein - metabolism</topic><topic>Organisms</topic><topic>Pancreas</topic><topic>Pancreatitis</topic><topic>Pancreatitis - chemically induced</topic><topic>Pancreatitis - immunology</topic><topic>Pathogens</topic><topic>Receptors, CCR2 - biosynthesis</topic><topic>Receptors, CCR2 - immunology</topic><topic>Rodents</topic><topic>Signal Transduction - immunology</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuji, Yoshihisa</creatorcontrib><creatorcontrib>Watanabe, Tomohiro</creatorcontrib><creatorcontrib>Kudo, Masatoshi</creatorcontrib><creatorcontrib>Arai, Hidenori</creatorcontrib><creatorcontrib>Strober, Warren</creatorcontrib><creatorcontrib>Chiba, Tsutomu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuji, Yoshihisa</au><au>Watanabe, Tomohiro</au><au>Kudo, Masatoshi</au><au>Arai, Hidenori</au><au>Strober, Warren</au><au>Chiba, Tsutomu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing of Commensal Organisms by the Intracellular Sensor NOD1 Mediates Experimental Pancreatitis</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2012-08-24</date><risdate>2012</risdate><volume>37</volume><issue>2</issue><spage>326</spage><epage>338</epage><pages>326-338</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecystokinin receptor agonist) administration depends on NOD1 stimulation by gut microflora. To analyze this NOD1 activity, we induced pancreatitis by simultaneous administration of a low dose of cerulein (that does not itself induce pancreatitis) and FK156, an activator of NOD1 that mimics the effect of gut bacteria that have breached the mucosal barrier. The pancreatitis was dependent on acinar cell production of the chemokine MCP-1 and the intrapancreatic influx of CCR2+ inflammatory cells. Moreover, MCP-1 production involved activation of the transcription factors NF-κB and STAT3, each requiring complementary NOD1 and cerulein signaling. These studies indicate that gut commensals enable noninfectious pancreatic inflammation via NOD1 signaling in pancreatic acinar cells. [Display omitted] ► NOD1 activation enhances a cholecystokinin receptor agonist-induced pancreatitis ► The development of pancreatitis depends on the interaction between CCR2 and MCP-1 ► Activation of STAT3 and NF-κB is responsible for the development of pancreatitis ► Commensal organisms facilitate pancreatic inflammation via NOD1 signaling</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22902233</pmid><doi>10.1016/j.immuni.2012.05.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2012-08, Vol.37 (2), p.326-338
issn 1074-7613
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3523885
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Acetylmuramyl-Alanyl-Isoglutamine - adverse effects
Acinar cells
Acinar Cells - immunology
Animals
Antibiotics
Bacteria - immunology
Ceruletide - adverse effects
Chemokine CCL2 - biosynthesis
Chemokine CCL2 - immunology
Chemokines
Cholecystokinin receptors
Commensals
Diaminopimelic Acid - adverse effects
Diaminopimelic Acid - analogs & derivatives
Digestive tract
Enzymes
Experiments
Humans
Immunity, Mucosal - immunology
Inflammation
Metabolic disorders
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microflora
Monocyte chemoattractant protein 1
Mortality
Mucosa
Mucous Membrane - immunology
Mucous Membrane - microbiology
NF- Kappa B protein
NF-kappa B - metabolism
Nod1 protein
Nod1 Signaling Adaptor Protein - immunology
Nod1 Signaling Adaptor Protein - metabolism
Organisms
Pancreas
Pancreatitis
Pancreatitis - chemically induced
Pancreatitis - immunology
Pathogens
Receptors, CCR2 - biosynthesis
Receptors, CCR2 - immunology
Rodents
Signal Transduction - immunology
Stat3 protein
STAT3 Transcription Factor - metabolism
Transcription factors
title Sensing of Commensal Organisms by the Intracellular Sensor NOD1 Mediates Experimental Pancreatitis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20of%20Commensal%20Organisms%20by%20the%20Intracellular%20Sensor%20NOD1%20Mediates%20Experimental%20Pancreatitis&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Tsuji,%20Yoshihisa&rft.date=2012-08-24&rft.volume=37&rft.issue=2&rft.spage=326&rft.epage=338&rft.pages=326-338&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2012.05.024&rft_dat=%3Cproquest_pubme%3E1113217071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629994580&rft_id=info:pmid/22902233&rft_els_id=S107476131200324X&rfr_iscdi=true