Control of Neuronal Morphology by the Atypical Cadherin Fat3

Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2011-09, Vol.71 (5), p.820-832
Hauptverfasser: Deans, Michael R., Krol, Alexandra, Abraira, Victoria E., Copley, Catherine O., Tucker, Andrew F., Goodrich, Lisa V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 5
container_start_page 820
container_title Neuron (Cambridge, Mass.)
container_volume 71
creator Deans, Michael R.
Krol, Alexandra
Abraira, Victoria E.
Copley, Catherine O.
Tucker, Andrew F.
Goodrich, Lisa V.
description Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution. [Display omitted] ► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina
doi_str_mv 10.1016/j.neuron.2011.06.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3521586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311005563</els_id><sourcerecordid>3388955231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCILoV_gFAkDj0lvBcn_pAQUrWigNSWC5wtr_PS9SobL3ZSaf89XrYU2gOcLPnNm5k3w9hrhAoBxbtNNdIcw1jVgFiBqKAWT9gCQcuyQa2fsgUoLUpRS37CXqS0AcCm1ficndSogYMUC_Z-GcYphqEIfXH9i88OxVWIu3UYws2-WO2LaU3F-bTfeZdHS9utKfqxuLATf8me9XZI9OruPWXfLz5-W34uL79--rI8vyxdq9RUSoEape1BCL7SUkAPZK2ru66npjv4qPuOiDvL65UE4FyJRrX5R1ineMtP2Ycj725ebalzlC3bweyi39q4N8F683Ay-rW5CbeGtzW2SmSCszuCGH7MlCaz9cnRMNiRwpyMRsiKIPC_SKUU57KFJiPfPkJuwhxzfMlg22iddZXMqOaIcjGkFKm_d41gDj2ajTn2aA49GhAm95jX3vx98f3S7-L-REI591tP0STnaXTU-UhuMl3w_1b4CZ2Mr8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549958687</pqid></control><display><type>article</type><title>Control of Neuronal Morphology by the Atypical Cadherin Fat3</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deans, Michael R. ; Krol, Alexandra ; Abraira, Victoria E. ; Copley, Catherine O. ; Tucker, Andrew F. ; Goodrich, Lisa V.</creator><creatorcontrib>Deans, Michael R. ; Krol, Alexandra ; Abraira, Victoria E. ; Copley, Catherine O. ; Tucker, Andrew F. ; Goodrich, Lisa V.</creatorcontrib><description>Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution. [Display omitted] ► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.06.026</identifier><identifier>PMID: 21903076</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Amacrine cells ; Amacrine Cells - classification ; Amacrine Cells - cytology ; Amacrine Cells - metabolism ; Amacrine Cells - physiology ; Animals ; Animals, Newborn ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Cadherins - deficiency ; Cadherins - physiology ; Cell adhesion &amp; migration ; Cell Movement - genetics ; Charitable foundations ; Dendrites - genetics ; Dendrites - metabolism ; Dendrites - ultrastructure ; Gene Expression Regulation, Developmental - genetics ; Insects ; Kinases ; Luminescent Proteins - genetics ; Mice ; Mice, Transgenic ; Microscopy ; Microscopy, Electron, Transmission - methods ; Morphogenesis ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neural Stem Cells - physiology ; Neurons ; Proteins ; Retina - cytology ; Retina - growth &amp; development ; RNA, Messenger - metabolism ; Scholarships &amp; fellowships ; Transcription Factors - genetics ; Tyrosine 3-Monooxygenase - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2011-09, Vol.71 (5), p.820-832</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 8, 2011</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</citedby><cites>FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627311005563$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21903076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deans, Michael R.</creatorcontrib><creatorcontrib>Krol, Alexandra</creatorcontrib><creatorcontrib>Abraira, Victoria E.</creatorcontrib><creatorcontrib>Copley, Catherine O.</creatorcontrib><creatorcontrib>Tucker, Andrew F.</creatorcontrib><creatorcontrib>Goodrich, Lisa V.</creatorcontrib><title>Control of Neuronal Morphology by the Atypical Cadherin Fat3</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution. [Display omitted] ► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina</description><subject>Age Factors</subject><subject>Amacrine cells</subject><subject>Amacrine Cells - classification</subject><subject>Amacrine Cells - cytology</subject><subject>Amacrine Cells - metabolism</subject><subject>Amacrine Cells - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Cadherins - deficiency</subject><subject>Cadherins - physiology</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Movement - genetics</subject><subject>Charitable foundations</subject><subject>Dendrites - genetics</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Insects</subject><subject>Kinases</subject><subject>Luminescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Morphogenesis</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Stem Cells - physiology</subject><subject>Neurons</subject><subject>Proteins</subject><subject>Retina - cytology</subject><subject>Retina - growth &amp; development</subject><subject>RNA, Messenger - metabolism</subject><subject>Scholarships &amp; fellowships</subject><subject>Transcription Factors - genetics</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCILoV_gFAkDj0lvBcn_pAQUrWigNSWC5wtr_PS9SobL3ZSaf89XrYU2gOcLPnNm5k3w9hrhAoBxbtNNdIcw1jVgFiBqKAWT9gCQcuyQa2fsgUoLUpRS37CXqS0AcCm1ficndSogYMUC_Z-GcYphqEIfXH9i88OxVWIu3UYws2-WO2LaU3F-bTfeZdHS9utKfqxuLATf8me9XZI9OruPWXfLz5-W34uL79--rI8vyxdq9RUSoEape1BCL7SUkAPZK2ru66npjv4qPuOiDvL65UE4FyJRrX5R1ineMtP2Ycj725ebalzlC3bweyi39q4N8F683Ay-rW5CbeGtzW2SmSCszuCGH7MlCaz9cnRMNiRwpyMRsiKIPC_SKUU57KFJiPfPkJuwhxzfMlg22iddZXMqOaIcjGkFKm_d41gDj2ajTn2aA49GhAm95jX3vx98f3S7-L-REI591tP0STnaXTU-UhuMl3w_1b4CZ2Mr8g</recordid><startdate>20110908</startdate><enddate>20110908</enddate><creator>Deans, Michael R.</creator><creator>Krol, Alexandra</creator><creator>Abraira, Victoria E.</creator><creator>Copley, Catherine O.</creator><creator>Tucker, Andrew F.</creator><creator>Goodrich, Lisa V.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110908</creationdate><title>Control of Neuronal Morphology by the Atypical Cadherin Fat3</title><author>Deans, Michael R. ; Krol, Alexandra ; Abraira, Victoria E. ; Copley, Catherine O. ; Tucker, Andrew F. ; Goodrich, Lisa V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Age Factors</topic><topic>Amacrine cells</topic><topic>Amacrine Cells - classification</topic><topic>Amacrine Cells - cytology</topic><topic>Amacrine Cells - metabolism</topic><topic>Amacrine Cells - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Cadherins - deficiency</topic><topic>Cadherins - physiology</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Movement - genetics</topic><topic>Charitable foundations</topic><topic>Dendrites - genetics</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Insects</topic><topic>Kinases</topic><topic>Luminescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Morphogenesis</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Stem Cells - physiology</topic><topic>Neurons</topic><topic>Proteins</topic><topic>Retina - cytology</topic><topic>Retina - growth &amp; development</topic><topic>RNA, Messenger - metabolism</topic><topic>Scholarships &amp; fellowships</topic><topic>Transcription Factors - genetics</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deans, Michael R.</creatorcontrib><creatorcontrib>Krol, Alexandra</creatorcontrib><creatorcontrib>Abraira, Victoria E.</creatorcontrib><creatorcontrib>Copley, Catherine O.</creatorcontrib><creatorcontrib>Tucker, Andrew F.</creatorcontrib><creatorcontrib>Goodrich, Lisa V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deans, Michael R.</au><au>Krol, Alexandra</au><au>Abraira, Victoria E.</au><au>Copley, Catherine O.</au><au>Tucker, Andrew F.</au><au>Goodrich, Lisa V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Neuronal Morphology by the Atypical Cadherin Fat3</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-09-08</date><risdate>2011</risdate><volume>71</volume><issue>5</issue><spage>820</spage><epage>832</epage><pages>820-832</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution. [Display omitted] ► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21903076</pmid><doi>10.1016/j.neuron.2011.06.026</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2011-09, Vol.71 (5), p.820-832
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3521586
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Age Factors
Amacrine cells
Amacrine Cells - classification
Amacrine Cells - cytology
Amacrine Cells - metabolism
Amacrine Cells - physiology
Animals
Animals, Newborn
Basic Helix-Loop-Helix Transcription Factors - genetics
Cadherins - deficiency
Cadherins - physiology
Cell adhesion & migration
Cell Movement - genetics
Charitable foundations
Dendrites - genetics
Dendrites - metabolism
Dendrites - ultrastructure
Gene Expression Regulation, Developmental - genetics
Insects
Kinases
Luminescent Proteins - genetics
Mice
Mice, Transgenic
Microscopy
Microscopy, Electron, Transmission - methods
Morphogenesis
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neural Stem Cells - physiology
Neurons
Proteins
Retina - cytology
Retina - growth & development
RNA, Messenger - metabolism
Scholarships & fellowships
Transcription Factors - genetics
Tyrosine 3-Monooxygenase - metabolism
Vesicular Inhibitory Amino Acid Transport Proteins - metabolism
title Control of Neuronal Morphology by the Atypical Cadherin Fat3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Neuronal%20Morphology%20by%20the%20Atypical%20Cadherin%20Fat3&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Deans,%20Michael%C2%A0R.&rft.date=2011-09-08&rft.volume=71&rft.issue=5&rft.spage=820&rft.epage=832&rft.pages=820-832&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.06.026&rft_dat=%3Cproquest_pubme%3E3388955231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549958687&rft_id=info:pmid/21903076&rft_els_id=S0896627311005563&rfr_iscdi=true