Control of Neuronal Morphology by the Atypical Cadherin Fat3
Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2011-09, Vol.71 (5), p.820-832 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 5 |
container_start_page | 820 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 71 |
creator | Deans, Michael R. Krol, Alexandra Abraira, Victoria E. Copley, Catherine O. Tucker, Andrew F. Goodrich, Lisa V. |
description | Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution.
[Display omitted]
► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina |
doi_str_mv | 10.1016/j.neuron.2011.06.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3521586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311005563</els_id><sourcerecordid>3388955231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCILoV_gFAkDj0lvBcn_pAQUrWigNSWC5wtr_PS9SobL3ZSaf89XrYU2gOcLPnNm5k3w9hrhAoBxbtNNdIcw1jVgFiBqKAWT9gCQcuyQa2fsgUoLUpRS37CXqS0AcCm1ficndSogYMUC_Z-GcYphqEIfXH9i88OxVWIu3UYws2-WO2LaU3F-bTfeZdHS9utKfqxuLATf8me9XZI9OruPWXfLz5-W34uL79--rI8vyxdq9RUSoEape1BCL7SUkAPZK2ru66npjv4qPuOiDvL65UE4FyJRrX5R1ineMtP2Ycj725ebalzlC3bweyi39q4N8F683Ay-rW5CbeGtzW2SmSCszuCGH7MlCaz9cnRMNiRwpyMRsiKIPC_SKUU57KFJiPfPkJuwhxzfMlg22iddZXMqOaIcjGkFKm_d41gDj2ajTn2aA49GhAm95jX3vx98f3S7-L-REI591tP0STnaXTU-UhuMl3w_1b4CZ2Mr8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549958687</pqid></control><display><type>article</type><title>Control of Neuronal Morphology by the Atypical Cadherin Fat3</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deans, Michael R. ; Krol, Alexandra ; Abraira, Victoria E. ; Copley, Catherine O. ; Tucker, Andrew F. ; Goodrich, Lisa V.</creator><creatorcontrib>Deans, Michael R. ; Krol, Alexandra ; Abraira, Victoria E. ; Copley, Catherine O. ; Tucker, Andrew F. ; Goodrich, Lisa V.</creatorcontrib><description>Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution.
[Display omitted]
► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.06.026</identifier><identifier>PMID: 21903076</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Amacrine cells ; Amacrine Cells - classification ; Amacrine Cells - cytology ; Amacrine Cells - metabolism ; Amacrine Cells - physiology ; Animals ; Animals, Newborn ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Cadherins - deficiency ; Cadherins - physiology ; Cell adhesion & migration ; Cell Movement - genetics ; Charitable foundations ; Dendrites - genetics ; Dendrites - metabolism ; Dendrites - ultrastructure ; Gene Expression Regulation, Developmental - genetics ; Insects ; Kinases ; Luminescent Proteins - genetics ; Mice ; Mice, Transgenic ; Microscopy ; Microscopy, Electron, Transmission - methods ; Morphogenesis ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neural Stem Cells - physiology ; Neurons ; Proteins ; Retina - cytology ; Retina - growth & development ; RNA, Messenger - metabolism ; Scholarships & fellowships ; Transcription Factors - genetics ; Tyrosine 3-Monooxygenase - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2011-09, Vol.71 (5), p.820-832</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 8, 2011</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</citedby><cites>FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627311005563$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21903076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deans, Michael R.</creatorcontrib><creatorcontrib>Krol, Alexandra</creatorcontrib><creatorcontrib>Abraira, Victoria E.</creatorcontrib><creatorcontrib>Copley, Catherine O.</creatorcontrib><creatorcontrib>Tucker, Andrew F.</creatorcontrib><creatorcontrib>Goodrich, Lisa V.</creatorcontrib><title>Control of Neuronal Morphology by the Atypical Cadherin Fat3</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution.
[Display omitted]
► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina</description><subject>Age Factors</subject><subject>Amacrine cells</subject><subject>Amacrine Cells - classification</subject><subject>Amacrine Cells - cytology</subject><subject>Amacrine Cells - metabolism</subject><subject>Amacrine Cells - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Cadherins - deficiency</subject><subject>Cadherins - physiology</subject><subject>Cell adhesion & migration</subject><subject>Cell Movement - genetics</subject><subject>Charitable foundations</subject><subject>Dendrites - genetics</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Insects</subject><subject>Kinases</subject><subject>Luminescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Morphogenesis</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Stem Cells - physiology</subject><subject>Neurons</subject><subject>Proteins</subject><subject>Retina - cytology</subject><subject>Retina - growth & development</subject><subject>RNA, Messenger - metabolism</subject><subject>Scholarships & fellowships</subject><subject>Transcription Factors - genetics</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCILoV_gFAkDj0lvBcn_pAQUrWigNSWC5wtr_PS9SobL3ZSaf89XrYU2gOcLPnNm5k3w9hrhAoBxbtNNdIcw1jVgFiBqKAWT9gCQcuyQa2fsgUoLUpRS37CXqS0AcCm1ficndSogYMUC_Z-GcYphqEIfXH9i88OxVWIu3UYws2-WO2LaU3F-bTfeZdHS9utKfqxuLATf8me9XZI9OruPWXfLz5-W34uL79--rI8vyxdq9RUSoEape1BCL7SUkAPZK2ru66npjv4qPuOiDvL65UE4FyJRrX5R1ineMtP2Ycj725ebalzlC3bweyi39q4N8F683Ay-rW5CbeGtzW2SmSCszuCGH7MlCaz9cnRMNiRwpyMRsiKIPC_SKUU57KFJiPfPkJuwhxzfMlg22iddZXMqOaIcjGkFKm_d41gDj2ajTn2aA49GhAm95jX3vx98f3S7-L-REI591tP0STnaXTU-UhuMl3w_1b4CZ2Mr8g</recordid><startdate>20110908</startdate><enddate>20110908</enddate><creator>Deans, Michael R.</creator><creator>Krol, Alexandra</creator><creator>Abraira, Victoria E.</creator><creator>Copley, Catherine O.</creator><creator>Tucker, Andrew F.</creator><creator>Goodrich, Lisa V.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110908</creationdate><title>Control of Neuronal Morphology by the Atypical Cadherin Fat3</title><author>Deans, Michael R. ; Krol, Alexandra ; Abraira, Victoria E. ; Copley, Catherine O. ; Tucker, Andrew F. ; Goodrich, Lisa V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-761917af0663b9760f0eaac2ddfe4d30762fdee3ca32b7003386485ee36ac8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Age Factors</topic><topic>Amacrine cells</topic><topic>Amacrine Cells - classification</topic><topic>Amacrine Cells - cytology</topic><topic>Amacrine Cells - metabolism</topic><topic>Amacrine Cells - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Cadherins - deficiency</topic><topic>Cadherins - physiology</topic><topic>Cell adhesion & migration</topic><topic>Cell Movement - genetics</topic><topic>Charitable foundations</topic><topic>Dendrites - genetics</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Insects</topic><topic>Kinases</topic><topic>Luminescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Morphogenesis</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Stem Cells - physiology</topic><topic>Neurons</topic><topic>Proteins</topic><topic>Retina - cytology</topic><topic>Retina - growth & development</topic><topic>RNA, Messenger - metabolism</topic><topic>Scholarships & fellowships</topic><topic>Transcription Factors - genetics</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deans, Michael R.</creatorcontrib><creatorcontrib>Krol, Alexandra</creatorcontrib><creatorcontrib>Abraira, Victoria E.</creatorcontrib><creatorcontrib>Copley, Catherine O.</creatorcontrib><creatorcontrib>Tucker, Andrew F.</creatorcontrib><creatorcontrib>Goodrich, Lisa V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deans, Michael R.</au><au>Krol, Alexandra</au><au>Abraira, Victoria E.</au><au>Copley, Catherine O.</au><au>Tucker, Andrew F.</au><au>Goodrich, Lisa V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Neuronal Morphology by the Atypical Cadherin Fat3</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-09-08</date><risdate>2011</risdate><volume>71</volume><issue>5</issue><spage>820</spage><epage>832</epage><pages>820-832</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution.
[Display omitted]
► In amacrine cells, Fat3 determines dendrite number and orientation ► Fat3 acts independently to guide amacrine cell migration ► Loss of fat3 creates an unusual pattern of lamination in the retina ► A Fat: Four-jointed signaling mechanism is conserved in the mouse retina</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21903076</pmid><doi>10.1016/j.neuron.2011.06.026</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2011-09, Vol.71 (5), p.820-832 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3521586 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Age Factors Amacrine cells Amacrine Cells - classification Amacrine Cells - cytology Amacrine Cells - metabolism Amacrine Cells - physiology Animals Animals, Newborn Basic Helix-Loop-Helix Transcription Factors - genetics Cadherins - deficiency Cadherins - physiology Cell adhesion & migration Cell Movement - genetics Charitable foundations Dendrites - genetics Dendrites - metabolism Dendrites - ultrastructure Gene Expression Regulation, Developmental - genetics Insects Kinases Luminescent Proteins - genetics Mice Mice, Transgenic Microscopy Microscopy, Electron, Transmission - methods Morphogenesis Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neural Stem Cells - physiology Neurons Proteins Retina - cytology Retina - growth & development RNA, Messenger - metabolism Scholarships & fellowships Transcription Factors - genetics Tyrosine 3-Monooxygenase - metabolism Vesicular Inhibitory Amino Acid Transport Proteins - metabolism |
title | Control of Neuronal Morphology by the Atypical Cadherin Fat3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Neuronal%20Morphology%20by%20the%20Atypical%20Cadherin%20Fat3&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Deans,%20Michael%C2%A0R.&rft.date=2011-09-08&rft.volume=71&rft.issue=5&rft.spage=820&rft.epage=832&rft.pages=820-832&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.06.026&rft_dat=%3Cproquest_pubme%3E3388955231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549958687&rft_id=info:pmid/21903076&rft_els_id=S0896627311005563&rfr_iscdi=true |