Network physiology reveals relations between network topology and physiological function
The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with diffe...
Gespeichert in:
Veröffentlicht in: | Nature communications 2012-02, Vol.3 (1), p.702-702, Article 702 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 1 |
container_start_page | 702 |
container_title | Nature communications |
container_volume | 3 |
creator | Bashan, Amir Bartsch, Ronny P. Kantelhardt, Jan. W. Havlin, Shlomo Ivanov, Plamen Ch |
description | The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiological states, the network undergoes topological transitions associated with fast reorganization of physiological interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.
Humans are a network of complex physiological systems, but quantifying these diverse systems is a challenge. This study presents a method to show that each physiological state is characterized by a specific network structure, demonstrating a connection between network topology and function. |
doi_str_mv | 10.1038/ncomms1705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760476941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-afa94b5396f92786b2c781d28a532eb43bd7510547b6b7c50eb4a3d4ac294e383</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoTuZu_AFS8EJQqs1Hm-ZGkOEXDL1R8C6kabp1tklN2sn-vRmd29TcnJDzvG9O8gJwAqMrGOH0WktT1w7SKN4DRygiMIQU4f2d_QCMnJtHfmEGU0IOwQAhghKE8BF4f1btl7EfQTNbutJUZroMrFooUTlfK9GWRrsg85BSOtBruDVNjwqdb5WlFFVQdFquRMfgoPAmarSuQ_B2f_c6fgwnLw9P49tJKOOItqEoBCNZjFlSMETTJEOSpjBHqYgxUhnBWU5jGMWEZklGvcafCZwTIREjCqd4CG5636bLapVLpVsrKt7YshZ2yY0o-e-OLmd8ahYcxzBl_k-G4HxtYM1np1zL69JJVVVCK9M5zhCDCJIEe_LsDzk3ndX-ddxHwQiCkEFPXfSUtMY5q4rNLDBacSnfRubh093pN-hPQB647AHnW3qq7O6d_-y-AZNro6o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039421191</pqid></control><display><type>article</type><title>Network physiology reveals relations between network topology and physiological function</title><source>Springer Nature OA/Free Journals</source><creator>Bashan, Amir ; Bartsch, Ronny P. ; Kantelhardt, Jan. W. ; Havlin, Shlomo ; Ivanov, Plamen Ch</creator><creatorcontrib>Bashan, Amir ; Bartsch, Ronny P. ; Kantelhardt, Jan. W. ; Havlin, Shlomo ; Ivanov, Plamen Ch</creatorcontrib><description>The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiological states, the network undergoes topological transitions associated with fast reorganization of physiological interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.
Humans are a network of complex physiological systems, but quantifying these diverse systems is a challenge. This study presents a method to show that each physiological state is characterized by a specific network structure, demonstrating a connection between network topology and function.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1705</identifier><identifier>PMID: 22426223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2408 ; 631/378/1385/519 ; 631/443 ; 631/553 ; Adult ; Female ; Humanities and Social Sciences ; Humans ; Male ; Models, Biological ; multidisciplinary ; Physiological Phenomena ; Science ; Science (multidisciplinary) ; Signal Transduction ; Sleep Stages - physiology ; Young Adult</subject><ispartof>Nature communications, 2012-02, Vol.3 (1), p.702-702, Article 702</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Feb 2012</rights><rights>2012 Macmillan Publishers Limited. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-afa94b5396f92786b2c781d28a532eb43bd7510547b6b7c50eb4a3d4ac294e383</citedby><cites>FETCH-LOGICAL-c507t-afa94b5396f92786b2c781d28a532eb43bd7510547b6b7c50eb4a3d4ac294e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518900/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518900/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,41127,42196,51583,53798,53800</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms1705$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22426223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bashan, Amir</creatorcontrib><creatorcontrib>Bartsch, Ronny P.</creatorcontrib><creatorcontrib>Kantelhardt, Jan. W.</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Ivanov, Plamen Ch</creatorcontrib><title>Network physiology reveals relations between network topology and physiological function</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiological states, the network undergoes topological transitions associated with fast reorganization of physiological interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.
Humans are a network of complex physiological systems, but quantifying these diverse systems is a challenge. This study presents a method to show that each physiological state is characterized by a specific network structure, demonstrating a connection between network topology and function.</description><subject>631/114/2408</subject><subject>631/378/1385/519</subject><subject>631/443</subject><subject>631/553</subject><subject>Adult</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Physiological Phenomena</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Sleep Stages - physiology</subject><subject>Young Adult</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMoTuZu_AFS8EJQqs1Hm-ZGkOEXDL1R8C6kabp1tklN2sn-vRmd29TcnJDzvG9O8gJwAqMrGOH0WktT1w7SKN4DRygiMIQU4f2d_QCMnJtHfmEGU0IOwQAhghKE8BF4f1btl7EfQTNbutJUZroMrFooUTlfK9GWRrsg85BSOtBruDVNjwqdb5WlFFVQdFquRMfgoPAmarSuQ_B2f_c6fgwnLw9P49tJKOOItqEoBCNZjFlSMETTJEOSpjBHqYgxUhnBWU5jGMWEZklGvcafCZwTIREjCqd4CG5636bLapVLpVsrKt7YshZ2yY0o-e-OLmd8ahYcxzBl_k-G4HxtYM1np1zL69JJVVVCK9M5zhCDCJIEe_LsDzk3ndX-ddxHwQiCkEFPXfSUtMY5q4rNLDBacSnfRubh093pN-hPQB647AHnW3qq7O6d_-y-AZNro6o</recordid><startdate>20120228</startdate><enddate>20120228</enddate><creator>Bashan, Amir</creator><creator>Bartsch, Ronny P.</creator><creator>Kantelhardt, Jan. W.</creator><creator>Havlin, Shlomo</creator><creator>Ivanov, Plamen Ch</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120228</creationdate><title>Network physiology reveals relations between network topology and physiological function</title><author>Bashan, Amir ; Bartsch, Ronny P. ; Kantelhardt, Jan. W. ; Havlin, Shlomo ; Ivanov, Plamen Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-afa94b5396f92786b2c781d28a532eb43bd7510547b6b7c50eb4a3d4ac294e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/114/2408</topic><topic>631/378/1385/519</topic><topic>631/443</topic><topic>631/553</topic><topic>Adult</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Physiological Phenomena</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Sleep Stages - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashan, Amir</creatorcontrib><creatorcontrib>Bartsch, Ronny P.</creatorcontrib><creatorcontrib>Kantelhardt, Jan. W.</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Ivanov, Plamen Ch</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bashan, Amir</au><au>Bartsch, Ronny P.</au><au>Kantelhardt, Jan. W.</au><au>Havlin, Shlomo</au><au>Ivanov, Plamen Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network physiology reveals relations between network topology and physiological function</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012-02-28</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>702</spage><epage>702</epage><pages>702-702</pages><artnum>702</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiological states, the network undergoes topological transitions associated with fast reorganization of physiological interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.
Humans are a network of complex physiological systems, but quantifying these diverse systems is a challenge. This study presents a method to show that each physiological state is characterized by a specific network structure, demonstrating a connection between network topology and function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22426223</pmid><doi>10.1038/ncomms1705</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2012-02, Vol.3 (1), p.702-702, Article 702 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518900 |
source | Springer Nature OA/Free Journals |
subjects | 631/114/2408 631/378/1385/519 631/443 631/553 Adult Female Humanities and Social Sciences Humans Male Models, Biological multidisciplinary Physiological Phenomena Science Science (multidisciplinary) Signal Transduction Sleep Stages - physiology Young Adult |
title | Network physiology reveals relations between network topology and physiological function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T10%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20physiology%20reveals%20relations%20between%20network%20topology%20and%20physiological%20function&rft.jtitle=Nature%20communications&rft.au=Bashan,%20Amir&rft.date=2012-02-28&rft.volume=3&rft.issue=1&rft.spage=702&rft.epage=702&rft.pages=702-702&rft.artnum=702&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1705&rft_dat=%3Cproquest_C6C%3E2760476941%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039421191&rft_id=info:pmid/22426223&rfr_iscdi=true |