B12 cofactors directly stabilize an mRNA regulatory switch
The crystal structures of two different cobalamin (vitamin B 12 )-binding riboswitches are determined; the structures reveal how cobalamin facilitates interdomain interactions to regulate gene expression. An alternative structure for riboswitches Small metabolites and ligands can affect gene express...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2012-12, Vol.492 (7427), p.133-137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 7427 |
container_start_page | 133 |
container_title | Nature (London) |
container_volume | 492 |
creator | Johnson Jr, James E. Reyes, Francis E. Polaski, Jacob T. Batey, Robert T. |
description | The crystal structures of two different cobalamin (vitamin B
12
)-binding riboswitches are determined; the structures reveal how cobalamin facilitates interdomain interactions to regulate gene expression.
An alternative structure for riboswitches
Small metabolites and ligands can affect gene expression by binding to a structured part of an RNA known as a riboswitch. Although the structures of many riboswitch receptor domains have been solved, the complete riboswitch structure with regulatory domain had not been determined. Robert Batey and colleagues have now solved the structure of two different cobalamin (vitamin B
12
) riboswitches that include the downstream regulatory domain. Ligand recognition occurs largely as a result of shape complementarity, rather than the more typical hydrogen bonding.
Structures of riboswitch receptor domains bound to their effector have shown how messenger RNAs recognize diverse small molecules, but mechanistic details linking the structures to the regulation of gene expression remain elusive
1
,
2
. To address this, here we solve crystal structures of two different classes of cobalamin (vitamin B
12
)-binding riboswitches that include the structural switch of the downstream regulatory domain. These classes share a common cobalamin-binding core, but use distinct peripheral extensions to recognize different B
12
derivatives. In each case, recognition is accomplished through shape complementarity between the RNA and cobalamin, with relatively few hydrogen bonding interactions that typically govern RNA–small molecule recognition. We show that a composite cobalamin–RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression. This is the first, to our knowledge, riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression. |
doi_str_mv | 10.1038/nature11607 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488640535</galeid><sourcerecordid>A488640535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6317-1f963bdafe3b165e210e89786af963391b113de8657ad7bfa8f70de6fca3b1123</originalsourceid><addsrcrecordid>eNp10t9rFDEQB_Agij2rT77LovggujXZ7CY5H4Tz8EehVKgVH8NsdrJN2c2eya5a_3pTrtY7WMlDIPOZb2AYQh4zesQoV689jFNAxgSVd8iClVLkpVDyLllQWqicKi4OyIMYLymlFZPlfXJQcCrKghcL8uYdKzIzWDDjEGLWuIBm7K6yOELtOvcbM_BZf3a6ygK2UwdJpeJPN5qLh-SehS7io5v7kHz98P58_Sk_-fzxeL06yY3gTObMLgWvG7DIayYqLBhFtZRKwHWBL1nNGG9QiUpCI2sLykraoLAGUgMr-CF5u83dTHWPjUE_Buj0JrgewpUewOn9incXuh1-aF4xJQVLAc-2AS10qJ23Q2Kmd9HoVamUKGnFq6TyGdWix5Q5eLQuPe_5pzPebNx3vYuOZlA6DfbOzKa-2GtIZsRfYwtTjPr4y9m-ffl_uzr_tj6d1SYMMQa0txNkVF8vkt5ZpKSf7A791v7dnASe3wCIBjobwBsX_zkhKsq4Su7V1sVU8i0GfTlMwaeFmf33D3t83FY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>B12 cofactors directly stabilize an mRNA regulatory switch</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Johnson Jr, James E. ; Reyes, Francis E. ; Polaski, Jacob T. ; Batey, Robert T.</creator><creatorcontrib>Johnson Jr, James E. ; Reyes, Francis E. ; Polaski, Jacob T. ; Batey, Robert T.</creatorcontrib><description>The crystal structures of two different cobalamin (vitamin B
12
)-binding riboswitches are determined; the structures reveal how cobalamin facilitates interdomain interactions to regulate gene expression.
An alternative structure for riboswitches
Small metabolites and ligands can affect gene expression by binding to a structured part of an RNA known as a riboswitch. Although the structures of many riboswitch receptor domains have been solved, the complete riboswitch structure with regulatory domain had not been determined. Robert Batey and colleagues have now solved the structure of two different cobalamin (vitamin B
12
) riboswitches that include the downstream regulatory domain. Ligand recognition occurs largely as a result of shape complementarity, rather than the more typical hydrogen bonding.
Structures of riboswitch receptor domains bound to their effector have shown how messenger RNAs recognize diverse small molecules, but mechanistic details linking the structures to the regulation of gene expression remain elusive
1
,
2
. To address this, here we solve crystal structures of two different classes of cobalamin (vitamin B
12
)-binding riboswitches that include the structural switch of the downstream regulatory domain. These classes share a common cobalamin-binding core, but use distinct peripheral extensions to recognize different B
12
derivatives. In each case, recognition is accomplished through shape complementarity between the RNA and cobalamin, with relatively few hydrogen bonding interactions that typically govern RNA–small molecule recognition. We show that a composite cobalamin–RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression. This is the first, to our knowledge, riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11607</identifier><identifier>PMID: 23064232</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/200 ; 631/337/2179 ; 631/45/535 ; Analysis ; Analytical, structural and metabolic biochemistry ; Base Sequence ; Biological and medical sciences ; Calorimetry ; Crystallography, X-Ray ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - drug effects ; Genetic regulation ; Humanities and Social Sciences ; Hydrogen Bonding - drug effects ; letter ; Ligands ; Messenger RNA ; Models, Molecular ; Molecular and cellular biology ; multidisciplinary ; Nucleic Acid Conformation - drug effects ; Properties ; Proteins ; Riboswitch - drug effects ; Riboswitch - genetics ; RNA, Bacterial - genetics ; RNA, Messenger - chemistry ; RNA, Messenger - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Science ; Structure ; Thermodynamics ; Vitamin B 12 - chemistry ; Vitamin B 12 - metabolism ; Vitamin B 12 - pharmacology ; Vitamin B12</subject><ispartof>Nature (London), 2012-12, Vol.492 (7427), p.133-137</ispartof><rights>Springer Nature Limited 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6317-1f963bdafe3b165e210e89786af963391b113de8657ad7bfa8f70de6fca3b1123</citedby><cites>FETCH-LOGICAL-c6317-1f963bdafe3b165e210e89786af963391b113de8657ad7bfa8f70de6fca3b1123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11607$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11607$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26650138$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23064232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson Jr, James E.</creatorcontrib><creatorcontrib>Reyes, Francis E.</creatorcontrib><creatorcontrib>Polaski, Jacob T.</creatorcontrib><creatorcontrib>Batey, Robert T.</creatorcontrib><title>B12 cofactors directly stabilize an mRNA regulatory switch</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The crystal structures of two different cobalamin (vitamin B
12
)-binding riboswitches are determined; the structures reveal how cobalamin facilitates interdomain interactions to regulate gene expression.
An alternative structure for riboswitches
Small metabolites and ligands can affect gene expression by binding to a structured part of an RNA known as a riboswitch. Although the structures of many riboswitch receptor domains have been solved, the complete riboswitch structure with regulatory domain had not been determined. Robert Batey and colleagues have now solved the structure of two different cobalamin (vitamin B
12
) riboswitches that include the downstream regulatory domain. Ligand recognition occurs largely as a result of shape complementarity, rather than the more typical hydrogen bonding.
Structures of riboswitch receptor domains bound to their effector have shown how messenger RNAs recognize diverse small molecules, but mechanistic details linking the structures to the regulation of gene expression remain elusive
1
,
2
. To address this, here we solve crystal structures of two different classes of cobalamin (vitamin B
12
)-binding riboswitches that include the structural switch of the downstream regulatory domain. These classes share a common cobalamin-binding core, but use distinct peripheral extensions to recognize different B
12
derivatives. In each case, recognition is accomplished through shape complementarity between the RNA and cobalamin, with relatively few hydrogen bonding interactions that typically govern RNA–small molecule recognition. We show that a composite cobalamin–RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression. This is the first, to our knowledge, riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression.</description><subject>631/208/200</subject><subject>631/337/2179</subject><subject>631/45/535</subject><subject>Analysis</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Calorimetry</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Genetic regulation</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen Bonding - drug effects</subject><subject>letter</subject><subject>Ligands</subject><subject>Messenger RNA</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>multidisciplinary</subject><subject>Nucleic Acid Conformation - drug effects</subject><subject>Properties</subject><subject>Proteins</subject><subject>Riboswitch - drug effects</subject><subject>Riboswitch - genetics</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Science</subject><subject>Structure</subject><subject>Thermodynamics</subject><subject>Vitamin B 12 - chemistry</subject><subject>Vitamin B 12 - metabolism</subject><subject>Vitamin B 12 - pharmacology</subject><subject>Vitamin B12</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10t9rFDEQB_Agij2rT77LovggujXZ7CY5H4Tz8EehVKgVH8NsdrJN2c2eya5a_3pTrtY7WMlDIPOZb2AYQh4zesQoV689jFNAxgSVd8iClVLkpVDyLllQWqicKi4OyIMYLymlFZPlfXJQcCrKghcL8uYdKzIzWDDjEGLWuIBm7K6yOELtOvcbM_BZf3a6ygK2UwdJpeJPN5qLh-SehS7io5v7kHz98P58_Sk_-fzxeL06yY3gTObMLgWvG7DIayYqLBhFtZRKwHWBL1nNGG9QiUpCI2sLykraoLAGUgMr-CF5u83dTHWPjUE_Buj0JrgewpUewOn9incXuh1-aF4xJQVLAc-2AS10qJ23Q2Kmd9HoVamUKGnFq6TyGdWix5Q5eLQuPe_5pzPebNx3vYuOZlA6DfbOzKa-2GtIZsRfYwtTjPr4y9m-ffl_uzr_tj6d1SYMMQa0txNkVF8vkt5ZpKSf7A791v7dnASe3wCIBjobwBsX_zkhKsq4Su7V1sVU8i0GfTlMwaeFmf33D3t83FY</recordid><startdate>20121206</startdate><enddate>20121206</enddate><creator>Johnson Jr, James E.</creator><creator>Reyes, Francis E.</creator><creator>Polaski, Jacob T.</creator><creator>Batey, Robert T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>5PM</scope></search><sort><creationdate>20121206</creationdate><title>B12 cofactors directly stabilize an mRNA regulatory switch</title><author>Johnson Jr, James E. ; Reyes, Francis E. ; Polaski, Jacob T. ; Batey, Robert T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6317-1f963bdafe3b165e210e89786af963391b113de8657ad7bfa8f70de6fca3b1123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/208/200</topic><topic>631/337/2179</topic><topic>631/45/535</topic><topic>Analysis</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Calorimetry</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Genetic regulation</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen Bonding - drug effects</topic><topic>letter</topic><topic>Ligands</topic><topic>Messenger RNA</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>multidisciplinary</topic><topic>Nucleic Acid Conformation - drug effects</topic><topic>Properties</topic><topic>Proteins</topic><topic>Riboswitch - drug effects</topic><topic>Riboswitch - genetics</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Science</topic><topic>Structure</topic><topic>Thermodynamics</topic><topic>Vitamin B 12 - chemistry</topic><topic>Vitamin B 12 - metabolism</topic><topic>Vitamin B 12 - pharmacology</topic><topic>Vitamin B12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson Jr, James E.</creatorcontrib><creatorcontrib>Reyes, Francis E.</creatorcontrib><creatorcontrib>Polaski, Jacob T.</creatorcontrib><creatorcontrib>Batey, Robert T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson Jr, James E.</au><au>Reyes, Francis E.</au><au>Polaski, Jacob T.</au><au>Batey, Robert T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>B12 cofactors directly stabilize an mRNA regulatory switch</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2012-12-06</date><risdate>2012</risdate><volume>492</volume><issue>7427</issue><spage>133</spage><epage>137</epage><pages>133-137</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The crystal structures of two different cobalamin (vitamin B
12
)-binding riboswitches are determined; the structures reveal how cobalamin facilitates interdomain interactions to regulate gene expression.
An alternative structure for riboswitches
Small metabolites and ligands can affect gene expression by binding to a structured part of an RNA known as a riboswitch. Although the structures of many riboswitch receptor domains have been solved, the complete riboswitch structure with regulatory domain had not been determined. Robert Batey and colleagues have now solved the structure of two different cobalamin (vitamin B
12
) riboswitches that include the downstream regulatory domain. Ligand recognition occurs largely as a result of shape complementarity, rather than the more typical hydrogen bonding.
Structures of riboswitch receptor domains bound to their effector have shown how messenger RNAs recognize diverse small molecules, but mechanistic details linking the structures to the regulation of gene expression remain elusive
1
,
2
. To address this, here we solve crystal structures of two different classes of cobalamin (vitamin B
12
)-binding riboswitches that include the structural switch of the downstream regulatory domain. These classes share a common cobalamin-binding core, but use distinct peripheral extensions to recognize different B
12
derivatives. In each case, recognition is accomplished through shape complementarity between the RNA and cobalamin, with relatively few hydrogen bonding interactions that typically govern RNA–small molecule recognition. We show that a composite cobalamin–RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression. This is the first, to our knowledge, riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23064232</pmid><doi>10.1038/nature11607</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2012-12, Vol.492 (7427), p.133-137 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518761 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 631/208/200 631/337/2179 631/45/535 Analysis Analytical, structural and metabolic biochemistry Base Sequence Biological and medical sciences Calorimetry Crystallography, X-Ray Escherichia coli - genetics Fundamental and applied biological sciences. Psychology Gene Expression Regulation - drug effects Genetic regulation Humanities and Social Sciences Hydrogen Bonding - drug effects letter Ligands Messenger RNA Models, Molecular Molecular and cellular biology multidisciplinary Nucleic Acid Conformation - drug effects Properties Proteins Riboswitch - drug effects Riboswitch - genetics RNA, Bacterial - genetics RNA, Messenger - chemistry RNA, Messenger - drug effects RNA, Messenger - genetics RNA, Messenger - metabolism Science Structure Thermodynamics Vitamin B 12 - chemistry Vitamin B 12 - metabolism Vitamin B 12 - pharmacology Vitamin B12 |
title | B12 cofactors directly stabilize an mRNA regulatory switch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B12%20cofactors%20directly%20stabilize%20an%20mRNA%20regulatory%20switch&rft.jtitle=Nature%20(London)&rft.au=Johnson%20Jr,%20James%20E.&rft.date=2012-12-06&rft.volume=492&rft.issue=7427&rft.spage=133&rft.epage=137&rft.pages=133-137&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11607&rft_dat=%3Cgale_pubme%3EA488640535%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23064232&rft_galeid=A488640535&rfr_iscdi=true |