Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase

Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2008-10, Vol.322 (5901), p.597-602
Hauptverfasser: Nagai, Shigeki, Dubrana, Karine, Tsai-Pflugfelder, Monika, Davidson, Marta B, Roberts, Tania M, Brown, Grant W, Varela, Elisa, Hediger, Florence, Gasser, Susan M, Krogan, Nevan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 5901
container_start_page 597
container_title Science (American Association for the Advancement of Science)
container_volume 322
creator Nagai, Shigeki
Dubrana, Karine
Tsai-Pflugfelder, Monika
Davidson, Marta B
Roberts, Tania M
Brown, Grant W
Varela, Elisa
Hediger, Florence
Gasser, Susan M
Krogan, Nevan J
description Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.
doi_str_mv 10.1126/science.1162790
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20145122</jstor_id><sourcerecordid>20145122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-aea3ea7c1b086fe906cd491ea0941b69f9f7a68523a19f0c49e78f5d6931007d3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEokvhzAmwkIBTqB07TuaCtOpSQFpapHbP1qwzWbzKxls7QeLf49VGpXCAk2W9z88z8ybLngv-XohCn0XrqLeULrqogD_IZoJDmUPB5cNsxrnUec2r8iR7EuOW86SBfJydiBpUXapilpmLsbeD8z127AbDhgbXb5hv2eJyzha4ww2xwTNkl6PtCAP75gPl8xi9dThQw65XX6_yBe2pb6gf2GrtbkeXTNjSbTDS0-xRi12kZ9N5mq0uPt6cf86XV5--nM-XudUAQ46EkrCyYs1r3RJwbRsFgpCDEmsNLbQV6rosJApouVVAVd2WjQYpOK8aeZp9OPrux_WOGptqCdiZfXA7DD-NR2f-VHr33Wz8DyNLUSsoksG7ySD425HiYHYuWuo67MmP0VRKpqGWXCXy7T9JDRWHFM5_QQEaCqEOf7_-C9z6MaRIoimELFNWwBN0doRs8DEGau-aE9wclsFMy2CmZUgvXt6fyW9-Sj8BbyYAo8WuDdhbF--4gteFAnno-MWR28bBh3u6UKUoDj6vjnqL3uAmJI_VdVIlF2Wl6zS6X2Y40Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213594890</pqid></control><display><type>article</type><title>Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Nagai, Shigeki ; Dubrana, Karine ; Tsai-Pflugfelder, Monika ; Davidson, Marta B ; Roberts, Tania M ; Brown, Grant W ; Varela, Elisa ; Hediger, Florence ; Gasser, Susan M ; Krogan, Nevan J</creator><creatorcontrib>Nagai, Shigeki ; Dubrana, Karine ; Tsai-Pflugfelder, Monika ; Davidson, Marta B ; Roberts, Tania M ; Brown, Grant W ; Varela, Elisa ; Hediger, Florence ; Gasser, Susan M ; Krogan, Nevan J</creatorcontrib><description>Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1162790</identifier><identifier>PMID: 18948542</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Biological and medical sciences ; Biomedical research ; Chromatin Immunoprecipitation ; Deoxyribonucleases, Type II Site-Specific - metabolism ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Conversion ; Gene expression ; Genes, Fungal ; Genetic loci ; Genetic mutation ; Genomics ; Imaging ; Immunoprecipitation ; Intracellular Signaling Peptides and Proteins - metabolism ; Kinetics ; Medical research ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; Nuclear pore ; Nuclear Pore - metabolism ; Nuclear Pore Complex Proteins - genetics ; Nuclear Pore Complex Proteins - metabolism ; Protein-Serine-Threonine Kinases - metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Small Ubiquitin-Related Modifier Proteins - metabolism ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitins ; Yeast ; Yeasts ; Zinc Fingers</subject><ispartof>Science (American Association for the Advancement of Science), 2008-10, Vol.322 (5901), p.597-602</ispartof><rights>Copyright 2008 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2008, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-aea3ea7c1b086fe906cd491ea0941b69f9f7a68523a19f0c49e78f5d6931007d3</citedby><cites>FETCH-LOGICAL-c699t-aea3ea7c1b086fe906cd491ea0941b69f9f7a68523a19f0c49e78f5d6931007d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20145122$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20145122$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20824934$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18948542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagai, Shigeki</creatorcontrib><creatorcontrib>Dubrana, Karine</creatorcontrib><creatorcontrib>Tsai-Pflugfelder, Monika</creatorcontrib><creatorcontrib>Davidson, Marta B</creatorcontrib><creatorcontrib>Roberts, Tania M</creatorcontrib><creatorcontrib>Brown, Grant W</creatorcontrib><creatorcontrib>Varela, Elisa</creatorcontrib><creatorcontrib>Hediger, Florence</creatorcontrib><creatorcontrib>Gasser, Susan M</creatorcontrib><creatorcontrib>Krogan, Nevan J</creatorcontrib><title>Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.</description><subject>Biological and medical sciences</subject><subject>Biomedical research</subject><subject>Chromatin Immunoprecipitation</subject><subject>Deoxyribonucleases, Type II Site-Specific - metabolism</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Conversion</subject><subject>Gene expression</subject><subject>Genes, Fungal</subject><subject>Genetic loci</subject><subject>Genetic mutation</subject><subject>Genomics</subject><subject>Imaging</subject><subject>Immunoprecipitation</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kinetics</subject><subject>Medical research</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>Nuclear pore</subject><subject>Nuclear Pore - metabolism</subject><subject>Nuclear Pore Complex Proteins - genetics</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Small Ubiquitin-Related Modifier Proteins - metabolism</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitins</subject><subject>Yeast</subject><subject>Yeasts</subject><subject>Zinc Fingers</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEokvhzAmwkIBTqB07TuaCtOpSQFpapHbP1qwzWbzKxls7QeLf49VGpXCAk2W9z88z8ybLngv-XohCn0XrqLeULrqogD_IZoJDmUPB5cNsxrnUec2r8iR7EuOW86SBfJydiBpUXapilpmLsbeD8z127AbDhgbXb5hv2eJyzha4ww2xwTNkl6PtCAP75gPl8xi9dThQw65XX6_yBe2pb6gf2GrtbkeXTNjSbTDS0-xRi12kZ9N5mq0uPt6cf86XV5--nM-XudUAQ46EkrCyYs1r3RJwbRsFgpCDEmsNLbQV6rosJApouVVAVd2WjQYpOK8aeZp9OPrux_WOGptqCdiZfXA7DD-NR2f-VHr33Wz8DyNLUSsoksG7ySD425HiYHYuWuo67MmP0VRKpqGWXCXy7T9JDRWHFM5_QQEaCqEOf7_-C9z6MaRIoimELFNWwBN0doRs8DEGau-aE9wclsFMy2CmZUgvXt6fyW9-Sj8BbyYAo8WuDdhbF--4gteFAnno-MWR28bBh3u6UKUoDj6vjnqL3uAmJI_VdVIlF2Wl6zS6X2Y40Cg</recordid><startdate>20081024</startdate><enddate>20081024</enddate><creator>Nagai, Shigeki</creator><creator>Dubrana, Karine</creator><creator>Tsai-Pflugfelder, Monika</creator><creator>Davidson, Marta B</creator><creator>Roberts, Tania M</creator><creator>Brown, Grant W</creator><creator>Varela, Elisa</creator><creator>Hediger, Florence</creator><creator>Gasser, Susan M</creator><creator>Krogan, Nevan J</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081024</creationdate><title>Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase</title><author>Nagai, Shigeki ; Dubrana, Karine ; Tsai-Pflugfelder, Monika ; Davidson, Marta B ; Roberts, Tania M ; Brown, Grant W ; Varela, Elisa ; Hediger, Florence ; Gasser, Susan M ; Krogan, Nevan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-aea3ea7c1b086fe906cd491ea0941b69f9f7a68523a19f0c49e78f5d6931007d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical research</topic><topic>Chromatin Immunoprecipitation</topic><topic>Deoxyribonucleases, Type II Site-Specific - metabolism</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Conversion</topic><topic>Gene expression</topic><topic>Genes, Fungal</topic><topic>Genetic loci</topic><topic>Genetic mutation</topic><topic>Genomics</topic><topic>Imaging</topic><topic>Immunoprecipitation</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kinetics</topic><topic>Medical research</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>Nuclear pore</topic><topic>Nuclear Pore - metabolism</topic><topic>Nuclear Pore Complex Proteins - genetics</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Small Ubiquitin-Related Modifier Proteins - metabolism</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitins</topic><topic>Yeast</topic><topic>Yeasts</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagai, Shigeki</creatorcontrib><creatorcontrib>Dubrana, Karine</creatorcontrib><creatorcontrib>Tsai-Pflugfelder, Monika</creatorcontrib><creatorcontrib>Davidson, Marta B</creatorcontrib><creatorcontrib>Roberts, Tania M</creatorcontrib><creatorcontrib>Brown, Grant W</creatorcontrib><creatorcontrib>Varela, Elisa</creatorcontrib><creatorcontrib>Hediger, Florence</creatorcontrib><creatorcontrib>Gasser, Susan M</creatorcontrib><creatorcontrib>Krogan, Nevan J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagai, Shigeki</au><au>Dubrana, Karine</au><au>Tsai-Pflugfelder, Monika</au><au>Davidson, Marta B</au><au>Roberts, Tania M</au><au>Brown, Grant W</au><au>Varela, Elisa</au><au>Hediger, Florence</au><au>Gasser, Susan M</au><au>Krogan, Nevan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2008-10-24</date><risdate>2008</risdate><volume>322</volume><issue>5901</issue><spage>597</spage><epage>602</epage><pages>597-602</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>18948542</pmid><doi>10.1126/science.1162790</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2008-10, Vol.322 (5901), p.597-602
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518492
source Jstor Complete Legacy; MEDLINE; Science Magazine
subjects Biological and medical sciences
Biomedical research
Chromatin Immunoprecipitation
Deoxyribonucleases, Type II Site-Specific - metabolism
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA Repair
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Gene Conversion
Gene expression
Genes, Fungal
Genetic loci
Genetic mutation
Genomics
Imaging
Immunoprecipitation
Intracellular Signaling Peptides and Proteins - metabolism
Kinetics
Medical research
Molecular and cellular biology
Molecular genetics
Mutagenesis. Repair
Nuclear pore
Nuclear Pore - metabolism
Nuclear Pore Complex Proteins - genetics
Nuclear Pore Complex Proteins - metabolism
Protein-Serine-Threonine Kinases - metabolism
Recombination, Genetic
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Small Ubiquitin-Related Modifier Proteins - metabolism
Ubiquitin-Protein Ligases - metabolism
Ubiquitins
Yeast
Yeasts
Zinc Fingers
title Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Targeting%20of%20DNA%20Damage%20to%20a%20Nuclear%20Pore-Associated%20SUMO-Dependent%20Ubiquitin%20Ligase&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Nagai,%20Shigeki&rft.date=2008-10-24&rft.volume=322&rft.issue=5901&rft.spage=597&rft.epage=602&rft.pages=597-602&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1162790&rft_dat=%3Cjstor_pubme%3E20145122%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213594890&rft_id=info:pmid/18948542&rft_jstor_id=20145122&rfr_iscdi=true