Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe

Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2012-07, Vol.18 (31), p.9669-9676
Hauptverfasser: Rojas-Quijano, Federico A., Tircsó, Gyula, Tircsóné Benyó, Enikő, Baranyai, Zsolt, Tran Hoang, Huan, Kálmán, Ferenc K., Gulaka, Praveen K., Kodibagkar, Vikram D., Aime, Silvio, Kovács, Zoltán, Sherry, A. Dean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9676
container_issue 31
container_start_page 9669
container_title Chemistry : a European journal
container_volume 18
creator Rojas-Quijano, Federico A.
Tircsó, Gyula
Tircsóné Benyó, Enikő
Baranyai, Zsolt
Tran Hoang, Huan
Kálmán, Ferenc K.
Gulaka, Praveen K.
Kodibagkar, Vikram D.
Aime, Silvio
Kovács, Zoltán
Sherry, A. Dean
description Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI. Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells.
doi_str_mv 10.1002/chem.201200266
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957868231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxujkRW4eiSTePEya39M2-lFYzbIYkCRBeHWdNs3bnF2urazwPLXW1zcoBdOTfM-7_P6-kXoNcFDgjF9Z2cwH1JMaL4I8QwNCKekZFLw52iAVSVLwZnaQq9SusIYK8HYS7RFqawwqcUAfZisun4GyafCdK4YzUw0tofo70zvQ1eEpjDFeLUIt96UE-iS7_01FMenh8VJDFPYQS8a0ybYfTi30fmn_bPRuDz6enA4-nhU2jxelHWtOLO1tJUF5wAbKxVlTeWIY9Qq7gh2aiqJyWXJBa_JVHLDwDacSlc3bBu9X3sXy-kcnIWuj6bVi-jnJq50MF7_W-n8TP8I15pxUmNJs-DtgyCGX0tIvZ77ZKFtTQdhmXSmcFXLSlRPo5hKJrNUZvTNf-hVWMYu_4QmUgipOP8ze7imbAwpRWg27yZY38eo72PUmxhzw97jbTf439wyoNbAjW9h9YROj8b7x4_l5brXpx5uN70m_tQi78X1xZcDPWGfL79N1Hd9wX4Dwb-4Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766795572</pqid></control><display><type>article</type><title>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rojas-Quijano, Federico A. ; Tircsó, Gyula ; Tircsóné Benyó, Enikő ; Baranyai, Zsolt ; Tran Hoang, Huan ; Kálmán, Ferenc K. ; Gulaka, Praveen K. ; Kodibagkar, Vikram D. ; Aime, Silvio ; Kovács, Zoltán ; Sherry, A. Dean</creator><creatorcontrib>Rojas-Quijano, Federico A. ; Tircsó, Gyula ; Tircsóné Benyó, Enikő ; Baranyai, Zsolt ; Tran Hoang, Huan ; Kálmán, Ferenc K. ; Gulaka, Praveen K. ; Kodibagkar, Vikram D. ; Aime, Silvio ; Kovács, Zoltán ; Sherry, A. Dean</creatorcontrib><description>Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI. Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201200266</identifier><identifier>PMID: 22740186</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Assessments ; Chemistry ; Derivatives ; Gadolinium - chemistry ; Heart diseases ; Heterocyclic Compounds - chemical synthesis ; Heterocyclic Compounds - chemistry ; Hypoxia ; Imaging ; imaging agents ; imaging of hypoxic tissue ; In vitro testing ; ligand design ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Male ; Mice ; Molecular Structure ; Organometallic Compounds - chemical synthesis ; Organometallic Compounds - chemistry ; Oxygen demand ; Rats ; relaxation properties ; Stability</subject><ispartof>Chemistry : a European journal, 2012-07, Vol.18 (31), p.9669-9676</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</citedby><cites>FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201200266$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201200266$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22740186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojas-Quijano, Federico A.</creatorcontrib><creatorcontrib>Tircsó, Gyula</creatorcontrib><creatorcontrib>Tircsóné Benyó, Enikő</creatorcontrib><creatorcontrib>Baranyai, Zsolt</creatorcontrib><creatorcontrib>Tran Hoang, Huan</creatorcontrib><creatorcontrib>Kálmán, Ferenc K.</creatorcontrib><creatorcontrib>Gulaka, Praveen K.</creatorcontrib><creatorcontrib>Kodibagkar, Vikram D.</creatorcontrib><creatorcontrib>Aime, Silvio</creatorcontrib><creatorcontrib>Kovács, Zoltán</creatorcontrib><creatorcontrib>Sherry, A. Dean</creatorcontrib><title>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI. Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells.</description><subject>Animals</subject><subject>Assessments</subject><subject>Chemistry</subject><subject>Derivatives</subject><subject>Gadolinium - chemistry</subject><subject>Heart diseases</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Hypoxia</subject><subject>Imaging</subject><subject>imaging agents</subject><subject>imaging of hypoxic tissue</subject><subject>In vitro testing</subject><subject>ligand design</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemical synthesis</subject><subject>Organometallic Compounds - chemistry</subject><subject>Oxygen demand</subject><subject>Rats</subject><subject>relaxation properties</subject><subject>Stability</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9PFDEUxxujkRW4eiSTePEya39M2-lFYzbIYkCRBeHWdNs3bnF2urazwPLXW1zcoBdOTfM-7_P6-kXoNcFDgjF9Z2cwH1JMaL4I8QwNCKekZFLw52iAVSVLwZnaQq9SusIYK8HYS7RFqawwqcUAfZisun4GyafCdK4YzUw0tofo70zvQ1eEpjDFeLUIt96UE-iS7_01FMenh8VJDFPYQS8a0ybYfTi30fmn_bPRuDz6enA4-nhU2jxelHWtOLO1tJUF5wAbKxVlTeWIY9Qq7gh2aiqJyWXJBa_JVHLDwDacSlc3bBu9X3sXy-kcnIWuj6bVi-jnJq50MF7_W-n8TP8I15pxUmNJs-DtgyCGX0tIvZ77ZKFtTQdhmXSmcFXLSlRPo5hKJrNUZvTNf-hVWMYu_4QmUgipOP8ze7imbAwpRWg27yZY38eo72PUmxhzw97jbTf439wyoNbAjW9h9YROj8b7x4_l5brXpx5uN70m_tQi78X1xZcDPWGfL79N1Hd9wX4Dwb-4Rw</recordid><startdate>20120727</startdate><enddate>20120727</enddate><creator>Rojas-Quijano, Federico A.</creator><creator>Tircsó, Gyula</creator><creator>Tircsóné Benyó, Enikő</creator><creator>Baranyai, Zsolt</creator><creator>Tran Hoang, Huan</creator><creator>Kálmán, Ferenc K.</creator><creator>Gulaka, Praveen K.</creator><creator>Kodibagkar, Vikram D.</creator><creator>Aime, Silvio</creator><creator>Kovács, Zoltán</creator><creator>Sherry, A. Dean</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120727</creationdate><title>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</title><author>Rojas-Quijano, Federico A. ; Tircsó, Gyula ; Tircsóné Benyó, Enikő ; Baranyai, Zsolt ; Tran Hoang, Huan ; Kálmán, Ferenc K. ; Gulaka, Praveen K. ; Kodibagkar, Vikram D. ; Aime, Silvio ; Kovács, Zoltán ; Sherry, A. Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Assessments</topic><topic>Chemistry</topic><topic>Derivatives</topic><topic>Gadolinium - chemistry</topic><topic>Heart diseases</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Hypoxia</topic><topic>Imaging</topic><topic>imaging agents</topic><topic>imaging of hypoxic tissue</topic><topic>In vitro testing</topic><topic>ligand design</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemical synthesis</topic><topic>Organometallic Compounds - chemistry</topic><topic>Oxygen demand</topic><topic>Rats</topic><topic>relaxation properties</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas-Quijano, Federico A.</creatorcontrib><creatorcontrib>Tircsó, Gyula</creatorcontrib><creatorcontrib>Tircsóné Benyó, Enikő</creatorcontrib><creatorcontrib>Baranyai, Zsolt</creatorcontrib><creatorcontrib>Tran Hoang, Huan</creatorcontrib><creatorcontrib>Kálmán, Ferenc K.</creatorcontrib><creatorcontrib>Gulaka, Praveen K.</creatorcontrib><creatorcontrib>Kodibagkar, Vikram D.</creatorcontrib><creatorcontrib>Aime, Silvio</creatorcontrib><creatorcontrib>Kovács, Zoltán</creatorcontrib><creatorcontrib>Sherry, A. Dean</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas-Quijano, Federico A.</au><au>Tircsó, Gyula</au><au>Tircsóné Benyó, Enikő</au><au>Baranyai, Zsolt</au><au>Tran Hoang, Huan</au><au>Kálmán, Ferenc K.</au><au>Gulaka, Praveen K.</au><au>Kodibagkar, Vikram D.</au><au>Aime, Silvio</au><au>Kovács, Zoltán</au><au>Sherry, A. Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2012-07-27</date><risdate>2012</risdate><volume>18</volume><issue>31</issue><spage>9669</spage><epage>9676</epage><pages>9669-9676</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI. Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22740186</pmid><doi>10.1002/chem.201200266</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2012-07, Vol.18 (31), p.9669-9676
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518072
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Assessments
Chemistry
Derivatives
Gadolinium - chemistry
Heart diseases
Heterocyclic Compounds - chemical synthesis
Heterocyclic Compounds - chemistry
Hypoxia
Imaging
imaging agents
imaging of hypoxic tissue
In vitro testing
ligand design
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
Male
Mice
Molecular Structure
Organometallic Compounds - chemical synthesis
Organometallic Compounds - chemistry
Oxygen demand
Rats
relaxation properties
Stability
title Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20a%20Hypoxia-Sensitive%20MRI%20Probe&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Rojas-Quijano,%20Federico%20A.&rft.date=2012-07-27&rft.volume=18&rft.issue=31&rft.spage=9669&rft.epage=9676&rft.pages=9669-9676&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201200266&rft_dat=%3Cproquest_pubme%3E3957868231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766795572&rft_id=info:pmid/22740186&rfr_iscdi=true