Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe
Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2012-07, Vol.18 (31), p.9669-9676 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9676 |
---|---|
container_issue | 31 |
container_start_page | 9669 |
container_title | Chemistry : a European journal |
container_volume | 18 |
creator | Rojas-Quijano, Federico A. Tircsó, Gyula Tircsóné Benyó, Enikő Baranyai, Zsolt Tran Hoang, Huan Kálmán, Ferenc K. Gulaka, Praveen K. Kodibagkar, Vikram D. Aime, Silvio Kovács, Zoltán Sherry, A. Dean |
description | Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI.
Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells. |
doi_str_mv | 10.1002/chem.201200266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957868231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxujkRW4eiSTePEya39M2-lFYzbIYkCRBeHWdNs3bnF2urazwPLXW1zcoBdOTfM-7_P6-kXoNcFDgjF9Z2cwH1JMaL4I8QwNCKekZFLw52iAVSVLwZnaQq9SusIYK8HYS7RFqawwqcUAfZisun4GyafCdK4YzUw0tofo70zvQ1eEpjDFeLUIt96UE-iS7_01FMenh8VJDFPYQS8a0ybYfTi30fmn_bPRuDz6enA4-nhU2jxelHWtOLO1tJUF5wAbKxVlTeWIY9Qq7gh2aiqJyWXJBa_JVHLDwDacSlc3bBu9X3sXy-kcnIWuj6bVi-jnJq50MF7_W-n8TP8I15pxUmNJs-DtgyCGX0tIvZ77ZKFtTQdhmXSmcFXLSlRPo5hKJrNUZvTNf-hVWMYu_4QmUgipOP8ze7imbAwpRWg27yZY38eo72PUmxhzw97jbTf439wyoNbAjW9h9YROj8b7x4_l5brXpx5uN70m_tQi78X1xZcDPWGfL79N1Hd9wX4Dwb-4Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766795572</pqid></control><display><type>article</type><title>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rojas-Quijano, Federico A. ; Tircsó, Gyula ; Tircsóné Benyó, Enikő ; Baranyai, Zsolt ; Tran Hoang, Huan ; Kálmán, Ferenc K. ; Gulaka, Praveen K. ; Kodibagkar, Vikram D. ; Aime, Silvio ; Kovács, Zoltán ; Sherry, A. Dean</creator><creatorcontrib>Rojas-Quijano, Federico A. ; Tircsó, Gyula ; Tircsóné Benyó, Enikő ; Baranyai, Zsolt ; Tran Hoang, Huan ; Kálmán, Ferenc K. ; Gulaka, Praveen K. ; Kodibagkar, Vikram D. ; Aime, Silvio ; Kovács, Zoltán ; Sherry, A. Dean</creatorcontrib><description>Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI.
Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201200266</identifier><identifier>PMID: 22740186</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Assessments ; Chemistry ; Derivatives ; Gadolinium - chemistry ; Heart diseases ; Heterocyclic Compounds - chemical synthesis ; Heterocyclic Compounds - chemistry ; Hypoxia ; Imaging ; imaging agents ; imaging of hypoxic tissue ; In vitro testing ; ligand design ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Male ; Mice ; Molecular Structure ; Organometallic Compounds - chemical synthesis ; Organometallic Compounds - chemistry ; Oxygen demand ; Rats ; relaxation properties ; Stability</subject><ispartof>Chemistry : a European journal, 2012-07, Vol.18 (31), p.9669-9676</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</citedby><cites>FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201200266$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201200266$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22740186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojas-Quijano, Federico A.</creatorcontrib><creatorcontrib>Tircsó, Gyula</creatorcontrib><creatorcontrib>Tircsóné Benyó, Enikő</creatorcontrib><creatorcontrib>Baranyai, Zsolt</creatorcontrib><creatorcontrib>Tran Hoang, Huan</creatorcontrib><creatorcontrib>Kálmán, Ferenc K.</creatorcontrib><creatorcontrib>Gulaka, Praveen K.</creatorcontrib><creatorcontrib>Kodibagkar, Vikram D.</creatorcontrib><creatorcontrib>Aime, Silvio</creatorcontrib><creatorcontrib>Kovács, Zoltán</creatorcontrib><creatorcontrib>Sherry, A. Dean</creatorcontrib><title>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI.
Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells.</description><subject>Animals</subject><subject>Assessments</subject><subject>Chemistry</subject><subject>Derivatives</subject><subject>Gadolinium - chemistry</subject><subject>Heart diseases</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Hypoxia</subject><subject>Imaging</subject><subject>imaging agents</subject><subject>imaging of hypoxic tissue</subject><subject>In vitro testing</subject><subject>ligand design</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemical synthesis</subject><subject>Organometallic Compounds - chemistry</subject><subject>Oxygen demand</subject><subject>Rats</subject><subject>relaxation properties</subject><subject>Stability</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9PFDEUxxujkRW4eiSTePEya39M2-lFYzbIYkCRBeHWdNs3bnF2urazwPLXW1zcoBdOTfM-7_P6-kXoNcFDgjF9Z2cwH1JMaL4I8QwNCKekZFLw52iAVSVLwZnaQq9SusIYK8HYS7RFqawwqcUAfZisun4GyafCdK4YzUw0tofo70zvQ1eEpjDFeLUIt96UE-iS7_01FMenh8VJDFPYQS8a0ybYfTi30fmn_bPRuDz6enA4-nhU2jxelHWtOLO1tJUF5wAbKxVlTeWIY9Qq7gh2aiqJyWXJBa_JVHLDwDacSlc3bBu9X3sXy-kcnIWuj6bVi-jnJq50MF7_W-n8TP8I15pxUmNJs-DtgyCGX0tIvZ77ZKFtTQdhmXSmcFXLSlRPo5hKJrNUZvTNf-hVWMYu_4QmUgipOP8ze7imbAwpRWg27yZY38eo72PUmxhzw97jbTf439wyoNbAjW9h9YROj8b7x4_l5brXpx5uN70m_tQi78X1xZcDPWGfL79N1Hd9wX4Dwb-4Rw</recordid><startdate>20120727</startdate><enddate>20120727</enddate><creator>Rojas-Quijano, Federico A.</creator><creator>Tircsó, Gyula</creator><creator>Tircsóné Benyó, Enikő</creator><creator>Baranyai, Zsolt</creator><creator>Tran Hoang, Huan</creator><creator>Kálmán, Ferenc K.</creator><creator>Gulaka, Praveen K.</creator><creator>Kodibagkar, Vikram D.</creator><creator>Aime, Silvio</creator><creator>Kovács, Zoltán</creator><creator>Sherry, A. Dean</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120727</creationdate><title>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</title><author>Rojas-Quijano, Federico A. ; Tircsó, Gyula ; Tircsóné Benyó, Enikő ; Baranyai, Zsolt ; Tran Hoang, Huan ; Kálmán, Ferenc K. ; Gulaka, Praveen K. ; Kodibagkar, Vikram D. ; Aime, Silvio ; Kovács, Zoltán ; Sherry, A. Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5396-88953c87c4cedde0ac7923f4d1d32c95d10d9b71aced756581b75a3ecf527d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Assessments</topic><topic>Chemistry</topic><topic>Derivatives</topic><topic>Gadolinium - chemistry</topic><topic>Heart diseases</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Hypoxia</topic><topic>Imaging</topic><topic>imaging agents</topic><topic>imaging of hypoxic tissue</topic><topic>In vitro testing</topic><topic>ligand design</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemical synthesis</topic><topic>Organometallic Compounds - chemistry</topic><topic>Oxygen demand</topic><topic>Rats</topic><topic>relaxation properties</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas-Quijano, Federico A.</creatorcontrib><creatorcontrib>Tircsó, Gyula</creatorcontrib><creatorcontrib>Tircsóné Benyó, Enikő</creatorcontrib><creatorcontrib>Baranyai, Zsolt</creatorcontrib><creatorcontrib>Tran Hoang, Huan</creatorcontrib><creatorcontrib>Kálmán, Ferenc K.</creatorcontrib><creatorcontrib>Gulaka, Praveen K.</creatorcontrib><creatorcontrib>Kodibagkar, Vikram D.</creatorcontrib><creatorcontrib>Aime, Silvio</creatorcontrib><creatorcontrib>Kovács, Zoltán</creatorcontrib><creatorcontrib>Sherry, A. Dean</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas-Quijano, Federico A.</au><au>Tircsó, Gyula</au><au>Tircsóné Benyó, Enikő</au><au>Baranyai, Zsolt</au><au>Tran Hoang, Huan</au><au>Kálmán, Ferenc K.</au><au>Gulaka, Praveen K.</au><au>Kodibagkar, Vikram D.</au><au>Aime, Silvio</au><au>Kovács, Zoltán</au><au>Sherry, A. Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2012-07-27</date><risdate>2012</risdate><volume>18</volume><issue>31</issue><spage>9669</spage><epage>9676</epage><pages>9669-9676</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Tissue hypoxia occurs in pathologic conditions, such as cancer, ischemic heart disease and stroke when oxygen demand is greater than oxygen supply. An imaging method that can differentiate hypoxic versus normoxic tissue could have an immediate impact on therapy choices. In this work, the gadolinium(III) complex of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with a 2‐nitroimidazole attached to one carboxyl group via an amide linkage was prepared, characterized and tested as a hypoxia‐sensitive MRI agent. A control complex, Gd(DO3A‐monobutylamide), was also prepared in order to test whether the nitroimidazole side‐chain alters either the water proton T1 relaxivity or the thermodynamic stability of the complex. The stabilities of these complexes were lower than that of Gd(DOTA)− as expected for mono‐amide derivatives. The water proton T1 relaxivity (r1), bound water residence lifetime (τM) and rotational correlation time (τR) of both complexes was determined by relaxivity measurements, variable temperature 17O NMR spectroscopy and proton nuclear magnetic relaxation dispersion (NMRD) studies. The resulting parameters (r1=6.38 mM−1 s−1 at 20 MHz, τM=0.71 μs, τR=141 ps) determined for the nitroimidazole derivative closely parallel to those of other Gd(DO3A‐monoamide) complexes of similar molecular size. In vitro MR imaging experiments with 9L rat glioma cells maintained under nitrogen (hypoxic) versus oxygen (normoxic) gas showed that both agents enter cells but only the nitroimidazole derivative was trapped in cells maintained under N2 as evidenced by an approximately twofold decrease in T1 measured for hypoxic cells versus normoxic cells exposed to this agent. These results suggest that the nitroimidazole derivative might serve as a molecular reporter for discriminating hypoxic versus normoxic tissues by MRI.
Hunting hypoxic cells: The DO3A‐monoamide ligand with a 2‐nitroimidazole moiety was synthesized with an aim to complex the GdIII ion as well as to target and visualize hypoxic cells by using the MRI technique (see figure). In vitro MRI experiments revealed that the conjugate might be suitable for assessment of hypoxia in vivo as the agent was selectively trapped in hypoxic (9L rat glioma) cells.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22740186</pmid><doi>10.1002/chem.201200266</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2012-07, Vol.18 (31), p.9669-9676 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3518072 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Assessments Chemistry Derivatives Gadolinium - chemistry Heart diseases Heterocyclic Compounds - chemical synthesis Heterocyclic Compounds - chemistry Hypoxia Imaging imaging agents imaging of hypoxic tissue In vitro testing ligand design Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Male Mice Molecular Structure Organometallic Compounds - chemical synthesis Organometallic Compounds - chemistry Oxygen demand Rats relaxation properties Stability |
title | Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20a%20Hypoxia-Sensitive%20MRI%20Probe&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Rojas-Quijano,%20Federico%20A.&rft.date=2012-07-27&rft.volume=18&rft.issue=31&rft.spage=9669&rft.epage=9676&rft.pages=9669-9676&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201200266&rft_dat=%3Cproquest_pubme%3E3957868231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766795572&rft_id=info:pmid/22740186&rfr_iscdi=true |