Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations

Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-12, Vol.287 (50), p.42165-42179
Hauptverfasser: Han, Derick, Ybanez, Maria D, Johnson, Heather S, McDonald, Jeniece N, Mesropyan, Lusine, Sancheti, Harsh, Martin, Gary, Martin, Alanna, Lim, Atalie M, Dara, Lily, Cadenas, Enrique, Tsukamoto, Hidekazu, Kaplowitz, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42179
container_issue 50
container_start_page 42165
container_title The Journal of biological chemistry
container_volume 287
creator Han, Derick
Ybanez, Maria D
Johnson, Heather S
McDonald, Jeniece N
Mesropyan, Lusine
Sancheti, Harsh
Martin, Gary
Martin, Alanna
Lim, Atalie M
Dara, Lily
Cadenas, Enrique
Tsukamoto, Hidekazu
Kaplowitz, Neil
description Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD(+) and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD(+), the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver.
doi_str_mv 10.1074/jbc.M112.377374
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3516762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23086958</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-eec1845de585a1410b2930b37e4d35b9ecbdb6f61150347380e7633ba4ec684f3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK2u3cn8AFNnMq_EhSD1CRU3Cu7CPG6aKclMSdJCV_51U1_o3ZzFOee7cBA6pWRKieIXS2OnT5SmU6YUU3wPjSnJWMIEfdtHY0JSmuSpyEboqOuWZDie00M0ShnJZC6yMXq_2QbdeIu106te9z4GHEtc-w20uPF9tFUMrvUa9xHbqo1hl61trGKNSwDnwwL7MEQtXGLj4wICdL47xy000UE9-OdYB4fLdbA7vK6Hfg_t56_uGB2Uuu7g5Fsn6PXu9mX2kMyf7x9n1_NklUrZJwCWZlw4EJnQlFNi0pwRwxRwx4TJwRpnZCkpFYRxxTICSjJmNAcrM16yCbr64q7WpgFnIfStrotV6xvdbouoffHfCb4qFnFTDFNKJdMBcPYX8Nv8mZJ9AHngemk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Han, Derick ; Ybanez, Maria D ; Johnson, Heather S ; McDonald, Jeniece N ; Mesropyan, Lusine ; Sancheti, Harsh ; Martin, Gary ; Martin, Alanna ; Lim, Atalie M ; Dara, Lily ; Cadenas, Enrique ; Tsukamoto, Hidekazu ; Kaplowitz, Neil</creator><creatorcontrib>Han, Derick ; Ybanez, Maria D ; Johnson, Heather S ; McDonald, Jeniece N ; Mesropyan, Lusine ; Sancheti, Harsh ; Martin, Gary ; Martin, Alanna ; Lim, Atalie M ; Dara, Lily ; Cadenas, Enrique ; Tsukamoto, Hidekazu ; Kaplowitz, Neil</creatorcontrib><description>Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD(+) and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD(+), the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.377374</identifier><identifier>PMID: 23086958</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Acetaldehyde - metabolism ; Acetylation - drug effects ; Adaptation, Physiological - drug effects ; Alcohol Drinking - adverse effects ; Alcohol Drinking - metabolism ; Alcohol Drinking - pathology ; Aldehyde Dehydrogenase - metabolism ; Aldehyde Dehydrogenase, Mitochondrial ; Animals ; Central Nervous System Depressants - adverse effects ; Central Nervous System Depressants - pharmacology ; Electron Transport Chain Complex Proteins - metabolism ; Ethanol - adverse effects ; Ethanol - pharmacology ; Liver - metabolism ; Liver - pathology ; Male ; Mice ; Microbiology ; Mitochondria, Liver - metabolism ; Mitochondria, Liver - pathology ; NAD - metabolism ; Oxygen Consumption - drug effects ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Stress, Physiological - drug effects ; Trans-Activators - biosynthesis ; Transcription Factors ; Up-Regulation - drug effects</subject><ispartof>The Journal of biological chemistry, 2012-12, Vol.287 (50), p.42165-42179</ispartof><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516762/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516762/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23086958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Derick</creatorcontrib><creatorcontrib>Ybanez, Maria D</creatorcontrib><creatorcontrib>Johnson, Heather S</creatorcontrib><creatorcontrib>McDonald, Jeniece N</creatorcontrib><creatorcontrib>Mesropyan, Lusine</creatorcontrib><creatorcontrib>Sancheti, Harsh</creatorcontrib><creatorcontrib>Martin, Gary</creatorcontrib><creatorcontrib>Martin, Alanna</creatorcontrib><creatorcontrib>Lim, Atalie M</creatorcontrib><creatorcontrib>Dara, Lily</creatorcontrib><creatorcontrib>Cadenas, Enrique</creatorcontrib><creatorcontrib>Tsukamoto, Hidekazu</creatorcontrib><creatorcontrib>Kaplowitz, Neil</creatorcontrib><title>Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD(+) and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD(+), the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver.</description><subject>Acetaldehyde - metabolism</subject><subject>Acetylation - drug effects</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Alcohol Drinking - adverse effects</subject><subject>Alcohol Drinking - metabolism</subject><subject>Alcohol Drinking - pathology</subject><subject>Aldehyde Dehydrogenase - metabolism</subject><subject>Aldehyde Dehydrogenase, Mitochondrial</subject><subject>Animals</subject><subject>Central Nervous System Depressants - adverse effects</subject><subject>Central Nervous System Depressants - pharmacology</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Ethanol - adverse effects</subject><subject>Ethanol - pharmacology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Microbiology</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondria, Liver - pathology</subject><subject>NAD - metabolism</subject><subject>Oxygen Consumption - drug effects</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Stress, Physiological - drug effects</subject><subject>Trans-Activators - biosynthesis</subject><subject>Transcription Factors</subject><subject>Up-Regulation - drug effects</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLw0AUhQdRbK2u3cn8AFNnMq_EhSD1CRU3Cu7CPG6aKclMSdJCV_51U1_o3ZzFOee7cBA6pWRKieIXS2OnT5SmU6YUU3wPjSnJWMIEfdtHY0JSmuSpyEboqOuWZDie00M0ShnJZC6yMXq_2QbdeIu106te9z4GHEtc-w20uPF9tFUMrvUa9xHbqo1hl61trGKNSwDnwwL7MEQtXGLj4wICdL47xy000UE9-OdYB4fLdbA7vK6Hfg_t56_uGB2Uuu7g5Fsn6PXu9mX2kMyf7x9n1_NklUrZJwCWZlw4EJnQlFNi0pwRwxRwx4TJwRpnZCkpFYRxxTICSjJmNAcrM16yCbr64q7WpgFnIfStrotV6xvdbouoffHfCb4qFnFTDFNKJdMBcPYX8Nv8mZJ9AHngemk</recordid><startdate>20121207</startdate><enddate>20121207</enddate><creator>Han, Derick</creator><creator>Ybanez, Maria D</creator><creator>Johnson, Heather S</creator><creator>McDonald, Jeniece N</creator><creator>Mesropyan, Lusine</creator><creator>Sancheti, Harsh</creator><creator>Martin, Gary</creator><creator>Martin, Alanna</creator><creator>Lim, Atalie M</creator><creator>Dara, Lily</creator><creator>Cadenas, Enrique</creator><creator>Tsukamoto, Hidekazu</creator><creator>Kaplowitz, Neil</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20121207</creationdate><title>Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations</title><author>Han, Derick ; Ybanez, Maria D ; Johnson, Heather S ; McDonald, Jeniece N ; Mesropyan, Lusine ; Sancheti, Harsh ; Martin, Gary ; Martin, Alanna ; Lim, Atalie M ; Dara, Lily ; Cadenas, Enrique ; Tsukamoto, Hidekazu ; Kaplowitz, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-eec1845de585a1410b2930b37e4d35b9ecbdb6f61150347380e7633ba4ec684f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetaldehyde - metabolism</topic><topic>Acetylation - drug effects</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Alcohol Drinking - adverse effects</topic><topic>Alcohol Drinking - metabolism</topic><topic>Alcohol Drinking - pathology</topic><topic>Aldehyde Dehydrogenase - metabolism</topic><topic>Aldehyde Dehydrogenase, Mitochondrial</topic><topic>Animals</topic><topic>Central Nervous System Depressants - adverse effects</topic><topic>Central Nervous System Depressants - pharmacology</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Ethanol - adverse effects</topic><topic>Ethanol - pharmacology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Microbiology</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondria, Liver - pathology</topic><topic>NAD - metabolism</topic><topic>Oxygen Consumption - drug effects</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Stress, Physiological - drug effects</topic><topic>Trans-Activators - biosynthesis</topic><topic>Transcription Factors</topic><topic>Up-Regulation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Derick</creatorcontrib><creatorcontrib>Ybanez, Maria D</creatorcontrib><creatorcontrib>Johnson, Heather S</creatorcontrib><creatorcontrib>McDonald, Jeniece N</creatorcontrib><creatorcontrib>Mesropyan, Lusine</creatorcontrib><creatorcontrib>Sancheti, Harsh</creatorcontrib><creatorcontrib>Martin, Gary</creatorcontrib><creatorcontrib>Martin, Alanna</creatorcontrib><creatorcontrib>Lim, Atalie M</creatorcontrib><creatorcontrib>Dara, Lily</creatorcontrib><creatorcontrib>Cadenas, Enrique</creatorcontrib><creatorcontrib>Tsukamoto, Hidekazu</creatorcontrib><creatorcontrib>Kaplowitz, Neil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Derick</au><au>Ybanez, Maria D</au><au>Johnson, Heather S</au><au>McDonald, Jeniece N</au><au>Mesropyan, Lusine</au><au>Sancheti, Harsh</au><au>Martin, Gary</au><au>Martin, Alanna</au><au>Lim, Atalie M</au><au>Dara, Lily</au><au>Cadenas, Enrique</au><au>Tsukamoto, Hidekazu</au><au>Kaplowitz, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-12-07</date><risdate>2012</risdate><volume>287</volume><issue>50</issue><spage>42165</spage><epage>42179</epage><pages>42165-42179</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD(+) and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD(+), the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>23086958</pmid><doi>10.1074/jbc.M112.377374</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-12, Vol.287 (50), p.42165-42179
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3516762
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acetaldehyde - metabolism
Acetylation - drug effects
Adaptation, Physiological - drug effects
Alcohol Drinking - adverse effects
Alcohol Drinking - metabolism
Alcohol Drinking - pathology
Aldehyde Dehydrogenase - metabolism
Aldehyde Dehydrogenase, Mitochondrial
Animals
Central Nervous System Depressants - adverse effects
Central Nervous System Depressants - pharmacology
Electron Transport Chain Complex Proteins - metabolism
Ethanol - adverse effects
Ethanol - pharmacology
Liver - metabolism
Liver - pathology
Male
Mice
Microbiology
Mitochondria, Liver - metabolism
Mitochondria, Liver - pathology
NAD - metabolism
Oxygen Consumption - drug effects
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Stress, Physiological - drug effects
Trans-Activators - biosynthesis
Transcription Factors
Up-Regulation - drug effects
title Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20adaptation%20of%20liver%20mitochondria%20to%20chronic%20alcohol%20feeding%20in%20mice:%20biogenesis,%20remodeling,%20and%20functional%20alterations&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Han,%20Derick&rft.date=2012-12-07&rft.volume=287&rft.issue=50&rft.spage=42165&rft.epage=42179&rft.pages=42165-42179&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.377374&rft_dat=%3Cpubmed%3E23086958%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23086958&rfr_iscdi=true