SHOC2 and CRAF Mediate ERK1/2 Reactivation in Mutant NRAS-mediated Resistance to RAF Inhibitor
ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanom...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2012-12, Vol.287 (50), p.41797-41807 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41807 |
---|---|
container_issue | 50 |
container_start_page | 41797 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Kaplan, Fred M. Kugel, Curtis H. Dadpey, Neda Shao, Yongping Abel, Ethan V. Aplin, Andrew E. |
description | ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.
Background: Reactivation of ERK1/2 frequently underlies acquired resistance to RAF inhibitors.
Results: NRAS mutations are acquired during resistance to RAF inhibitors and promote CRAF and SHOC2-modulated ERK1/2 pathway re-activation.
Conclusion: NRAS mutations in mutant BRAF cells alter RAF isoform and SHOC2 usage in the presence of RAF inhibitor.
Significance: These studies delineate mechanisms mediating RAF inhibitor resistance in mutant BRAF cells. |
doi_str_mv | 10.1074/jbc.M112.390906 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3516728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582043827X</els_id><sourcerecordid>S002192582043827X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-c42656afe4354c0d4cd945b44a5ae2bb9a965c573b2bb20cc12e3c8f6ee043a73</originalsourceid><addsrcrecordid>eNp1kE9PwjAYhxujEUTP3ky_wKB_t_ViQogIESQZmniy6bpOSmAjXSHx21syJXqwl6bt8_76vg8Atxj1MUrYYJ3r_hxj0qcCCRSfgS5GKY0ox2_noIsQwZEgPO2Aq6ZZo7CYwJegQyhKYsxxF7wvJ4sRgaoq4CgbjuHcFFZ5Ax-yJzwgMDNKe3tQ3tYVtBWc772qPHzOhsto26JFgBrbhHttoK_hMWVarWxufe2uwUWpNo25-d574HX88DKaRLPF43Q0nEWac-4jzUjMY1UaRjnTqGC6EIznjCmuDMlzoUTMNU9oHg4EaY2JoTotY2MQoyqhPXDf5u72eehLm8o7tZE7Z7fKfcpaWfn3pbIr-VEfZDAVJyQNAYM2QLu6aZwpT7UYyaNqGVTLo2rZqg4Vd7-_PPE_bgMgWsCEwQ_WONloa4KlwjqjvSxq-2_4F0NvjQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SHOC2 and CRAF Mediate ERK1/2 Reactivation in Mutant NRAS-mediated Resistance to RAF Inhibitor</title><source>MEDLINE</source><source>EZB Free E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kaplan, Fred M. ; Kugel, Curtis H. ; Dadpey, Neda ; Shao, Yongping ; Abel, Ethan V. ; Aplin, Andrew E.</creator><creatorcontrib>Kaplan, Fred M. ; Kugel, Curtis H. ; Dadpey, Neda ; Shao, Yongping ; Abel, Ethan V. ; Aplin, Andrew E.</creatorcontrib><description>ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.
Background: Reactivation of ERK1/2 frequently underlies acquired resistance to RAF inhibitors.
Results: NRAS mutations are acquired during resistance to RAF inhibitors and promote CRAF and SHOC2-modulated ERK1/2 pathway re-activation.
Conclusion: NRAS mutations in mutant BRAF cells alter RAF isoform and SHOC2 usage in the presence of RAF inhibitor.
Significance: These studies delineate mechanisms mediating RAF inhibitor resistance in mutant BRAF cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.390906</identifier><identifier>PMID: 23076151</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; BRAF ; Cell Line, Tumor ; Cell Signaling ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - genetics ; Enzyme Activation - drug effects ; Enzyme Activation - genetics ; Humans ; Indoles - pharmacology ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; MAP Kinase Signaling System - drug effects ; MAP Kinase Signaling System - genetics ; MAP Kinases (MAPKs) ; Melanoma ; Mitogen-Activated Protein Kinase 1 - genetics ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; Mutation, Missense ; NRAS ; PLX4032 ; PLX4720 ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins B-raf - metabolism ; Proto-Oncogene Proteins c-raf - genetics ; Proto-Oncogene Proteins c-raf - metabolism ; Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors ; Proto-Oncogene Proteins p21(ras) - genetics ; Proto-Oncogene Proteins p21(ras) - metabolism ; Raf ; Ras ; S Phase - drug effects ; S Phase - genetics ; SHOC2 ; Signal Transduction ; Sulfonamides - pharmacology</subject><ispartof>The Journal of biological chemistry, 2012-12, Vol.287 (50), p.41797-41807</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-c42656afe4354c0d4cd945b44a5ae2bb9a965c573b2bb20cc12e3c8f6ee043a73</citedby><cites>FETCH-LOGICAL-c555t-c42656afe4354c0d4cd945b44a5ae2bb9a965c573b2bb20cc12e3c8f6ee043a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516728/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516728/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23076151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaplan, Fred M.</creatorcontrib><creatorcontrib>Kugel, Curtis H.</creatorcontrib><creatorcontrib>Dadpey, Neda</creatorcontrib><creatorcontrib>Shao, Yongping</creatorcontrib><creatorcontrib>Abel, Ethan V.</creatorcontrib><creatorcontrib>Aplin, Andrew E.</creatorcontrib><title>SHOC2 and CRAF Mediate ERK1/2 Reactivation in Mutant NRAS-mediated Resistance to RAF Inhibitor</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.
Background: Reactivation of ERK1/2 frequently underlies acquired resistance to RAF inhibitors.
Results: NRAS mutations are acquired during resistance to RAF inhibitors and promote CRAF and SHOC2-modulated ERK1/2 pathway re-activation.
Conclusion: NRAS mutations in mutant BRAF cells alter RAF isoform and SHOC2 usage in the presence of RAF inhibitor.
Significance: These studies delineate mechanisms mediating RAF inhibitor resistance in mutant BRAF cells.</description><subject>Amino Acid Substitution</subject><subject>BRAF</subject><subject>Cell Line, Tumor</subject><subject>Cell Signaling</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - genetics</subject><subject>Humans</subject><subject>Indoles - pharmacology</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>MAP Kinases (MAPKs)</subject><subject>Melanoma</subject><subject>Mitogen-Activated Protein Kinase 1 - genetics</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Mutation, Missense</subject><subject>NRAS</subject><subject>PLX4032</subject><subject>PLX4720</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Proto-Oncogene Proteins c-raf - genetics</subject><subject>Proto-Oncogene Proteins c-raf - metabolism</subject><subject>Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Raf</subject><subject>Ras</subject><subject>S Phase - drug effects</subject><subject>S Phase - genetics</subject><subject>SHOC2</subject><subject>Signal Transduction</subject><subject>Sulfonamides - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9PwjAYhxujEUTP3ky_wKB_t_ViQogIESQZmniy6bpOSmAjXSHx21syJXqwl6bt8_76vg8Atxj1MUrYYJ3r_hxj0qcCCRSfgS5GKY0ox2_noIsQwZEgPO2Aq6ZZo7CYwJegQyhKYsxxF7wvJ4sRgaoq4CgbjuHcFFZ5Ax-yJzwgMDNKe3tQ3tYVtBWc772qPHzOhsto26JFgBrbhHttoK_hMWVarWxufe2uwUWpNo25-d574HX88DKaRLPF43Q0nEWac-4jzUjMY1UaRjnTqGC6EIznjCmuDMlzoUTMNU9oHg4EaY2JoTotY2MQoyqhPXDf5u72eehLm8o7tZE7Z7fKfcpaWfn3pbIr-VEfZDAVJyQNAYM2QLu6aZwpT7UYyaNqGVTLo2rZqg4Vd7-_PPE_bgMgWsCEwQ_WONloa4KlwjqjvSxq-2_4F0NvjQQ</recordid><startdate>20121207</startdate><enddate>20121207</enddate><creator>Kaplan, Fred M.</creator><creator>Kugel, Curtis H.</creator><creator>Dadpey, Neda</creator><creator>Shao, Yongping</creator><creator>Abel, Ethan V.</creator><creator>Aplin, Andrew E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20121207</creationdate><title>SHOC2 and CRAF Mediate ERK1/2 Reactivation in Mutant NRAS-mediated Resistance to RAF Inhibitor</title><author>Kaplan, Fred M. ; Kugel, Curtis H. ; Dadpey, Neda ; Shao, Yongping ; Abel, Ethan V. ; Aplin, Andrew E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-c42656afe4354c0d4cd945b44a5ae2bb9a965c573b2bb20cc12e3c8f6ee043a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Substitution</topic><topic>BRAF</topic><topic>Cell Line, Tumor</topic><topic>Cell Signaling</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - genetics</topic><topic>Humans</topic><topic>Indoles - pharmacology</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>MAP Kinases (MAPKs)</topic><topic>Melanoma</topic><topic>Mitogen-Activated Protein Kinase 1 - genetics</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Mutation, Missense</topic><topic>NRAS</topic><topic>PLX4032</topic><topic>PLX4720</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Proto-Oncogene Proteins c-raf - genetics</topic><topic>Proto-Oncogene Proteins c-raf - metabolism</topic><topic>Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Raf</topic><topic>Ras</topic><topic>S Phase - drug effects</topic><topic>S Phase - genetics</topic><topic>SHOC2</topic><topic>Signal Transduction</topic><topic>Sulfonamides - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplan, Fred M.</creatorcontrib><creatorcontrib>Kugel, Curtis H.</creatorcontrib><creatorcontrib>Dadpey, Neda</creatorcontrib><creatorcontrib>Shao, Yongping</creatorcontrib><creatorcontrib>Abel, Ethan V.</creatorcontrib><creatorcontrib>Aplin, Andrew E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplan, Fred M.</au><au>Kugel, Curtis H.</au><au>Dadpey, Neda</au><au>Shao, Yongping</au><au>Abel, Ethan V.</au><au>Aplin, Andrew E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHOC2 and CRAF Mediate ERK1/2 Reactivation in Mutant NRAS-mediated Resistance to RAF Inhibitor</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-12-07</date><risdate>2012</risdate><volume>287</volume><issue>50</issue><spage>41797</spage><epage>41807</epage><pages>41797-41807</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.
Background: Reactivation of ERK1/2 frequently underlies acquired resistance to RAF inhibitors.
Results: NRAS mutations are acquired during resistance to RAF inhibitors and promote CRAF and SHOC2-modulated ERK1/2 pathway re-activation.
Conclusion: NRAS mutations in mutant BRAF cells alter RAF isoform and SHOC2 usage in the presence of RAF inhibitor.
Significance: These studies delineate mechanisms mediating RAF inhibitor resistance in mutant BRAF cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23076151</pmid><doi>10.1074/jbc.M112.390906</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-12, Vol.287 (50), p.41797-41807 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3516728 |
source | MEDLINE; EZB Free E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Substitution BRAF Cell Line, Tumor Cell Signaling Drug Resistance, Neoplasm - drug effects Drug Resistance, Neoplasm - genetics Enzyme Activation - drug effects Enzyme Activation - genetics Humans Indoles - pharmacology Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism MAP Kinase Signaling System - drug effects MAP Kinase Signaling System - genetics MAP Kinases (MAPKs) Melanoma Mitogen-Activated Protein Kinase 1 - genetics Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - genetics Mitogen-Activated Protein Kinase 3 - metabolism Mutation, Missense NRAS PLX4032 PLX4720 Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins B-raf - metabolism Proto-Oncogene Proteins c-raf - genetics Proto-Oncogene Proteins c-raf - metabolism Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Raf Ras S Phase - drug effects S Phase - genetics SHOC2 Signal Transduction Sulfonamides - pharmacology |
title | SHOC2 and CRAF Mediate ERK1/2 Reactivation in Mutant NRAS-mediated Resistance to RAF Inhibitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHOC2%20and%20CRAF%20Mediate%20ERK1/2%20Reactivation%20in%20Mutant%20NRAS-mediated%20Resistance%20to%20RAF%20Inhibitor&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kaplan,%20Fred%20M.&rft.date=2012-12-07&rft.volume=287&rft.issue=50&rft.spage=41797&rft.epage=41807&rft.pages=41797-41807&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.390906&rft_dat=%3Celsevier_pubme%3ES002192582043827X%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23076151&rft_els_id=S002192582043827X&rfr_iscdi=true |