Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population
Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (47), p.19327-19332 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19332 |
---|---|
container_issue | 47 |
container_start_page | 19327 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Vardi, Assaf Haramaty, Liti Van Mooy, Benjamin A. S Fredricks, Helen F Kimmance, Susan A Larsen, Aud Bidle, Kay D |
description | Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi –EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems. |
doi_str_mv | 10.1073/pnas.1208895109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3511156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830208</jstor_id><sourcerecordid>41830208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-8f7b85a208e90d4f1091db336a7c6a2d6e4f8404141e5f9d1af7fb9c36b3219f3</originalsourceid><addsrcrecordid>eNpdkcFu1DAURSMEokNhzQqwxIbNtO_FjmNvKqEKKFIlFtC15Th2x6OMHeykUnf8A3_Il-BohimwsSXf867f1a2qlwhnCC09H4POZ1iDELJBkI-qVTlxzZmEx9UKoG7XgtXspHqW8xYAZCPgaXVSU6SspbiqzFXM068fP-98mjPp74PeeZOJDj3Jc2fsMMyDTsTEMKU4ZBIdWR6J05MlPhBNgp7mpIeCGBMHP23iuInJkjGOZXTyMTyvnjg9ZPvicJ9WNx8_fLu8Wl9_-fT58v312jSNmNbCtZ1odAljJfTMLUn6jlKuW8N13XPLnGDAkKFtnOxRu9Z10lDe0Rqlo6fVxd53nLud7Y0tO-tBjcnvdLpXUXv1rxL8Rt3GO0UbRGx4MXh3MEjx-2zzpHY-L3F1sHHOClFwCS0HWdC3_6HbOKdQ4i0USMZq2hTqfE-ZFHNO1h2XQVBLgWopUD0UWCZe_53hyP9prADkACyTD3ZSsVahpHVbkFd7ZJunmI4MQ0Gh_FT0N3vd6aj0bfJZ3XytATkAUqCc0t-Oy7bt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1180944235</pqid></control><display><type>article</type><title>Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vardi, Assaf ; Haramaty, Liti ; Van Mooy, Benjamin A. S ; Fredricks, Helen F ; Kimmance, Susan A ; Larsen, Aud ; Bidle, Kay D</creator><creatorcontrib>Vardi, Assaf ; Haramaty, Liti ; Van Mooy, Benjamin A. S ; Fredricks, Helen F ; Kimmance, Susan A ; Larsen, Aud ; Bidle, Kay D</creatorcontrib><description>Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi –EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1208895109</identifier><identifier>PMID: 23134731</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal populations ; Apoptosis ; Biological Sciences ; biomarkers ; Biopolymers - biosynthesis ; carbon ; Caspases - metabolism ; Cell Lineage ; Cells ; Emiliania huxleyi ; Enzyme Activation ; Eutrophication ; fluorescence ; Glycosphingolipids ; Haploidy ; Haptophyta - cytology ; Haptophyta - enzymology ; Haptophyta - virology ; Host-Pathogen Interactions - physiology ; host-pathogen relationships ; Infections ; Marine ecology ; Molecules ; Mortality ; Norway ; Phycodnaviridae - physiology ; Phytoplankton ; Reactive oxygen species ; Signal transduction ; Sphingolipids ; Subcellular Fractions - virology ; Time Factors ; Viral infections ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19327-19332</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 20, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-8f7b85a208e90d4f1091db336a7c6a2d6e4f8404141e5f9d1af7fb9c36b3219f3</citedby><cites>FETCH-LOGICAL-c558t-8f7b85a208e90d4f1091db336a7c6a2d6e4f8404141e5f9d1af7fb9c36b3219f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830208$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830208$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23134731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vardi, Assaf</creatorcontrib><creatorcontrib>Haramaty, Liti</creatorcontrib><creatorcontrib>Van Mooy, Benjamin A. S</creatorcontrib><creatorcontrib>Fredricks, Helen F</creatorcontrib><creatorcontrib>Kimmance, Susan A</creatorcontrib><creatorcontrib>Larsen, Aud</creatorcontrib><creatorcontrib>Bidle, Kay D</creatorcontrib><title>Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi –EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems.</description><subject>Animal populations</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>biomarkers</subject><subject>Biopolymers - biosynthesis</subject><subject>carbon</subject><subject>Caspases - metabolism</subject><subject>Cell Lineage</subject><subject>Cells</subject><subject>Emiliania huxleyi</subject><subject>Enzyme Activation</subject><subject>Eutrophication</subject><subject>fluorescence</subject><subject>Glycosphingolipids</subject><subject>Haploidy</subject><subject>Haptophyta - cytology</subject><subject>Haptophyta - enzymology</subject><subject>Haptophyta - virology</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>host-pathogen relationships</subject><subject>Infections</subject><subject>Marine ecology</subject><subject>Molecules</subject><subject>Mortality</subject><subject>Norway</subject><subject>Phycodnaviridae - physiology</subject><subject>Phytoplankton</subject><subject>Reactive oxygen species</subject><subject>Signal transduction</subject><subject>Sphingolipids</subject><subject>Subcellular Fractions - virology</subject><subject>Time Factors</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFu1DAURSMEokNhzQqwxIbNtO_FjmNvKqEKKFIlFtC15Th2x6OMHeykUnf8A3_Il-BohimwsSXf867f1a2qlwhnCC09H4POZ1iDELJBkI-qVTlxzZmEx9UKoG7XgtXspHqW8xYAZCPgaXVSU6SspbiqzFXM068fP-98mjPp74PeeZOJDj3Jc2fsMMyDTsTEMKU4ZBIdWR6J05MlPhBNgp7mpIeCGBMHP23iuInJkjGOZXTyMTyvnjg9ZPvicJ9WNx8_fLu8Wl9_-fT58v312jSNmNbCtZ1odAljJfTMLUn6jlKuW8N13XPLnGDAkKFtnOxRu9Z10lDe0Rqlo6fVxd53nLud7Y0tO-tBjcnvdLpXUXv1rxL8Rt3GO0UbRGx4MXh3MEjx-2zzpHY-L3F1sHHOClFwCS0HWdC3_6HbOKdQ4i0USMZq2hTqfE-ZFHNO1h2XQVBLgWopUD0UWCZe_53hyP9prADkACyTD3ZSsVahpHVbkFd7ZJunmI4MQ0Gh_FT0N3vd6aj0bfJZ3XytATkAUqCc0t-Oy7bt</recordid><startdate>20121120</startdate><enddate>20121120</enddate><creator>Vardi, Assaf</creator><creator>Haramaty, Liti</creator><creator>Van Mooy, Benjamin A. S</creator><creator>Fredricks, Helen F</creator><creator>Kimmance, Susan A</creator><creator>Larsen, Aud</creator><creator>Bidle, Kay D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121120</creationdate><title>Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population</title><author>Vardi, Assaf ; Haramaty, Liti ; Van Mooy, Benjamin A. S ; Fredricks, Helen F ; Kimmance, Susan A ; Larsen, Aud ; Bidle, Kay D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-8f7b85a208e90d4f1091db336a7c6a2d6e4f8404141e5f9d1af7fb9c36b3219f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animal populations</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>biomarkers</topic><topic>Biopolymers - biosynthesis</topic><topic>carbon</topic><topic>Caspases - metabolism</topic><topic>Cell Lineage</topic><topic>Cells</topic><topic>Emiliania huxleyi</topic><topic>Enzyme Activation</topic><topic>Eutrophication</topic><topic>fluorescence</topic><topic>Glycosphingolipids</topic><topic>Haploidy</topic><topic>Haptophyta - cytology</topic><topic>Haptophyta - enzymology</topic><topic>Haptophyta - virology</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>host-pathogen relationships</topic><topic>Infections</topic><topic>Marine ecology</topic><topic>Molecules</topic><topic>Mortality</topic><topic>Norway</topic><topic>Phycodnaviridae - physiology</topic><topic>Phytoplankton</topic><topic>Reactive oxygen species</topic><topic>Signal transduction</topic><topic>Sphingolipids</topic><topic>Subcellular Fractions - virology</topic><topic>Time Factors</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vardi, Assaf</creatorcontrib><creatorcontrib>Haramaty, Liti</creatorcontrib><creatorcontrib>Van Mooy, Benjamin A. S</creatorcontrib><creatorcontrib>Fredricks, Helen F</creatorcontrib><creatorcontrib>Kimmance, Susan A</creatorcontrib><creatorcontrib>Larsen, Aud</creatorcontrib><creatorcontrib>Bidle, Kay D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vardi, Assaf</au><au>Haramaty, Liti</au><au>Van Mooy, Benjamin A. S</au><au>Fredricks, Helen F</au><au>Kimmance, Susan A</au><au>Larsen, Aud</au><au>Bidle, Kay D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-20</date><risdate>2012</risdate><volume>109</volume><issue>47</issue><spage>19327</spage><epage>19332</epage><pages>19327-19332</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi –EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23134731</pmid><doi>10.1073/pnas.1208895109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19327-19332 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3511156 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animal populations Apoptosis Biological Sciences biomarkers Biopolymers - biosynthesis carbon Caspases - metabolism Cell Lineage Cells Emiliania huxleyi Enzyme Activation Eutrophication fluorescence Glycosphingolipids Haploidy Haptophyta - cytology Haptophyta - enzymology Haptophyta - virology Host-Pathogen Interactions - physiology host-pathogen relationships Infections Marine ecology Molecules Mortality Norway Phycodnaviridae - physiology Phytoplankton Reactive oxygen species Signal transduction Sphingolipids Subcellular Fractions - virology Time Factors Viral infections Viruses |
title | Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%E2%80%93virus%20dynamics%20and%20subcellular%20controls%20of%20cell%20fate%20in%20a%20natural%20coccolithophore%20population&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vardi,%20Assaf&rft.date=2012-11-20&rft.volume=109&rft.issue=47&rft.spage=19327&rft.epage=19332&rft.pages=19327-19332&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1208895109&rft_dat=%3Cjstor_pubme%3E41830208%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1180944235&rft_id=info:pmid/23134731&rft_jstor_id=41830208&rfr_iscdi=true |