From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction

Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2012-01, Vol.2012 (2012), p.302-315
Hauptverfasser: Metin, Selin, Sengor, N. Serap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 2012
container_start_page 302
container_title Computational Intelligence and Neuroscience
container_volume 2012
creator Metin, Selin
Sengor, N. Serap
description Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, and a computational model for nicotine addiction is proposed based on the neurophysiological basis of addiction. The model compromises different levels ranging from molecular basis to systems level, and it demonstrates three different possible behavioral patterns which are addict, nonaddict, and indecisive. The dynamical behavior of the proposed model is investigated with tools used in analyzing nonlinear dynamical systems, and the relation between the behavioral patterns and the dynamics of the system is discussed.
doi_str_mv 10.1155/2012/817485
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3508524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160527002_201212_201706200022_201706200022_302_315</airiti_id><sourcerecordid>1285097267</sourcerecordid><originalsourceid>FETCH-LOGICAL-a634t-e624756ac735abedaeaddf25bc62e3f023a8a2640c4e0bc8e2af420d26c4a9d23</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw4gyyxAWBltrj2E44IK1WFCptKQeQuFkT22FdZeMldlr13-PdlAV6aU_-mEePRjNvUTxn9B1jQhwDZXBcMVVW4kFxyGSlZgIUf7i_S3FQPInxglKhBIXHxQFwEIyV5WHx42QIa3JuDEYfeuzIYhW8cZGkQE57d-kTNp0jZ2NM8T2Zk0VYb8aEaYLPgnUdCS354k1Ivndkbq032-rT4lGLXXTPbs6j4vvJx2-Lz7Pl-afTxXw5Q8nLNHMSSiUkGsUFNs6iQ2tbEI2R4HhLgWOFIEtqSkcbUznAtgRqQZoSawv8qPgweTdjs3bWuD4N2OnN4Nc4XOuAXv9f6f1K_wyXmgtaCSiz4PWNYAi_RheTXvtoXNdh78IYNZOKca7ykO9GoWYy70RW90ArQWsFUt0DVRxkLXe9vrqFXoRxyJvYCSFTNfBMvZ0oM4QYB9fup8Go3kZGbyOjp8hk-uW_A9yzfzKSgTcTsPK9xSt_h-3FBLuMuBb3sMjpo1vZcqqjH3zyf_v_mi2S5uBSCjsj2x2KSqD569aDZ4gzwX8DG5_lGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282269923</pqid></control><display><type>article</type><title>From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Metin, Selin ; Sengor, N. Serap</creator><contributor>El-Deredy, Wael</contributor><creatorcontrib>Metin, Selin ; Sengor, N. Serap ; El-Deredy, Wael</creatorcontrib><description>Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, and a computational model for nicotine addiction is proposed based on the neurophysiological basis of addiction. The model compromises different levels ranging from molecular basis to systems level, and it demonstrates three different possible behavioral patterns which are addict, nonaddict, and indecisive. The dynamical behavior of the proposed model is investigated with tools used in analyzing nonlinear dynamical systems, and the relation between the behavioral patterns and the dynamics of the system is discussed.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2012/817485</identifier><identifier>PMID: 23251144</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Addictive behaviors ; Behavior ; Behavior, Addictive ; Brain - drug effects ; Brain - physiology ; Choice Behavior - physiology ; Computation ; Computer Simulation ; Decision Making - drug effects ; Drug addiction ; Dynamic tests ; Dynamical systems ; Intelligence ; Learning ; Learning - physiology ; Models, Neurological ; Models, Psychological ; Neurons - drug effects ; Neurons - physiology ; Nicotine ; Nicotine - pharmacology ; Nonlinear dynamics ; Nonlinearity ; Reward ; Studies ; System theory</subject><ispartof>Computational Intelligence and Neuroscience, 2012-01, Vol.2012 (2012), p.302-315</ispartof><rights>Copyright © 2012 Selin Metin and N. Serap Sengor.</rights><rights>Copyright © 2012 Selin Metin and N. Serap Sengor. Selin Metin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2012 S. Metin and N. S. Sengor. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a634t-e624756ac735abedaeaddf25bc62e3f023a8a2640c4e0bc8e2af420d26c4a9d23</citedby><cites>FETCH-LOGICAL-a634t-e624756ac735abedaeaddf25bc62e3f023a8a2640c4e0bc8e2af420d26c4a9d23</cites><orcidid>0000-0001-6278-2392 ; 0000-0002-2231-388X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508524/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508524/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23251144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>El-Deredy, Wael</contributor><creatorcontrib>Metin, Selin</creatorcontrib><creatorcontrib>Sengor, N. Serap</creatorcontrib><title>From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, and a computational model for nicotine addiction is proposed based on the neurophysiological basis of addiction. The model compromises different levels ranging from molecular basis to systems level, and it demonstrates three different possible behavioral patterns which are addict, nonaddict, and indecisive. The dynamical behavior of the proposed model is investigated with tools used in analyzing nonlinear dynamical systems, and the relation between the behavioral patterns and the dynamics of the system is discussed.</description><subject>Addictive behaviors</subject><subject>Behavior</subject><subject>Behavior, Addictive</subject><subject>Brain - drug effects</subject><subject>Brain - physiology</subject><subject>Choice Behavior - physiology</subject><subject>Computation</subject><subject>Computer Simulation</subject><subject>Decision Making - drug effects</subject><subject>Drug addiction</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Intelligence</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Models, Neurological</subject><subject>Models, Psychological</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Nicotine</subject><subject>Nicotine - pharmacology</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Reward</subject><subject>Studies</subject><subject>System theory</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw4gyyxAWBltrj2E44IK1WFCptKQeQuFkT22FdZeMldlr13-PdlAV6aU_-mEePRjNvUTxn9B1jQhwDZXBcMVVW4kFxyGSlZgIUf7i_S3FQPInxglKhBIXHxQFwEIyV5WHx42QIa3JuDEYfeuzIYhW8cZGkQE57d-kTNp0jZ2NM8T2Zk0VYb8aEaYLPgnUdCS354k1Ivndkbq032-rT4lGLXXTPbs6j4vvJx2-Lz7Pl-afTxXw5Q8nLNHMSSiUkGsUFNs6iQ2tbEI2R4HhLgWOFIEtqSkcbUznAtgRqQZoSawv8qPgweTdjs3bWuD4N2OnN4Nc4XOuAXv9f6f1K_wyXmgtaCSiz4PWNYAi_RheTXvtoXNdh78IYNZOKca7ykO9GoWYy70RW90ArQWsFUt0DVRxkLXe9vrqFXoRxyJvYCSFTNfBMvZ0oM4QYB9fup8Go3kZGbyOjp8hk-uW_A9yzfzKSgTcTsPK9xSt_h-3FBLuMuBb3sMjpo1vZcqqjH3zyf_v_mi2S5uBSCjsj2x2KSqD569aDZ4gzwX8DG5_lGw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Metin, Selin</creator><creator>Sengor, N. Serap</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6278-2392</orcidid><orcidid>https://orcid.org/0000-0002-2231-388X</orcidid></search><sort><creationdate>20120101</creationdate><title>From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction</title><author>Metin, Selin ; Sengor, N. Serap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a634t-e624756ac735abedaeaddf25bc62e3f023a8a2640c4e0bc8e2af420d26c4a9d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Addictive behaviors</topic><topic>Behavior</topic><topic>Behavior, Addictive</topic><topic>Brain - drug effects</topic><topic>Brain - physiology</topic><topic>Choice Behavior - physiology</topic><topic>Computation</topic><topic>Computer Simulation</topic><topic>Decision Making - drug effects</topic><topic>Drug addiction</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Intelligence</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Models, Neurological</topic><topic>Models, Psychological</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Nicotine</topic><topic>Nicotine - pharmacology</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Reward</topic><topic>Studies</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metin, Selin</creatorcontrib><creatorcontrib>Sengor, N. Serap</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metin, Selin</au><au>Sengor, N. Serap</au><au>El-Deredy, Wael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>302</spage><epage>315</epage><pages>302-315</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, and a computational model for nicotine addiction is proposed based on the neurophysiological basis of addiction. The model compromises different levels ranging from molecular basis to systems level, and it demonstrates three different possible behavioral patterns which are addict, nonaddict, and indecisive. The dynamical behavior of the proposed model is investigated with tools used in analyzing nonlinear dynamical systems, and the relation between the behavioral patterns and the dynamics of the system is discussed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>23251144</pmid><doi>10.1155/2012/817485</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6278-2392</orcidid><orcidid>https://orcid.org/0000-0002-2231-388X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational Intelligence and Neuroscience, 2012-01, Vol.2012 (2012), p.302-315
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3508524
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Addictive behaviors
Behavior
Behavior, Addictive
Brain - drug effects
Brain - physiology
Choice Behavior - physiology
Computation
Computer Simulation
Decision Making - drug effects
Drug addiction
Dynamic tests
Dynamical systems
Intelligence
Learning
Learning - physiology
Models, Neurological
Models, Psychological
Neurons - drug effects
Neurons - physiology
Nicotine
Nicotine - pharmacology
Nonlinear dynamics
Nonlinearity
Reward
Studies
System theory
title From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Occasional%20Choices%20to%20Inevitable%20Musts:%20A%20Computational%20Model%20of%20Nicotine%20Addiction&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Metin,%20Selin&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=302&rft.epage=315&rft.pages=302-315&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2012/817485&rft_dat=%3Cproquest_pubme%3E1285097267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282269923&rft_id=info:pmid/23251144&rft_airiti_id=P20160527002_201212_201706200022_201706200022_302_315&rfr_iscdi=true