Increased afterload induces pathological cardiac hypertrophy: a new in vitro model

Increased afterload results in ‘pathological’ cardiac hypertrophy, the most important risk factor for the development of heart failure. Current in vitro models fall short in deciphering the mechanisms of hypertrophy induced by afterload enhancement. The aim of this study was to develop an experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basic research in cardiology 2012-11, Vol.107 (6), p.307, Article 307
Hauptverfasser: Hirt, Marc N., Sörensen, Nils A., Bartholdt, Lena M., Boeddinghaus, Jasper, Schaaf, Sebastian, Eder, Alexandra, Vollert, Ingra, Stöhr, Andrea, Schulze, Thomas, Witten, Anika, Stoll, Monika, Hansen, Arne, Eschenhagen, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 307
container_title Basic research in cardiology
container_volume 107
creator Hirt, Marc N.
Sörensen, Nils A.
Bartholdt, Lena M.
Boeddinghaus, Jasper
Schaaf, Sebastian
Eder, Alexandra
Vollert, Ingra
Stöhr, Andrea
Schulze, Thomas
Witten, Anika
Stoll, Monika
Hansen, Arne
Eschenhagen, Thomas
description Increased afterload results in ‘pathological’ cardiac hypertrophy, the most important risk factor for the development of heart failure. Current in vitro models fall short in deciphering the mechanisms of hypertrophy induced by afterload enhancement. The aim of this study was to develop an experimental model that allows investigating the impact of afterload enhancement (AE) on work-performing heart muscles in vitro. Fibrin-based engineered heart tissue (EHT) was cast between two hollow elastic silicone posts in a 24-well cell culture format. After 2 weeks, the posts were reinforced with metal braces, which markedly increased afterload of the spontaneously beating EHTs. Serum-free, triiodothyronine-, and hydrocortisone-supplemented medium conditions were established to prevent undefined serum effects. Control EHTs were handled identically without reinforcement. Endothelin-1 (ET-1)- or phenylephrine (PE)-stimulated EHTs served as positive control for hypertrophy. Cardiomyocytes in EHTs enlarged by 28.4 % under AE and to a similar extent by ET-1- or PE-stimulation (40.6 or 23.6 %), as determined by dystrophin staining. Cardiomyocyte hypertrophy was accompanied by activation of the fetal gene program, increased glucose consumption, and increased mRNA levels and extracellular deposition of collagen-1. Importantly, afterload-enhanced EHTs exhibited reduced contractile force and impaired diastolic relaxation directly after release of the metal braces. These deleterious effects of afterload enhancement were preventable by endothelin-A, but not endothelin-B receptor blockade. Sustained afterload enhancement of EHTs alone is sufficient to induce pathological cardiac remodeling with reduced contractile function and increased glucose consumption. The model will be useful to investigate novel therapeutic approaches in a simple and fast manner.
doi_str_mv 10.1007/s00395-012-0307-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3505530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823879491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-dcd5088b4d0aab940ba83688b709da1e6dc4d1681df5066775de7438b92d9ede3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMotn78AC8S8Lw62Wx2sx4EKX6BIIieQzaZtlu2mzXZVtpfb6RV6sHTwDvPvDPMS8gZg0sGUFwFAF6KBFiaAIciWe-RIcu4SJgEvk-GUYREZqkckKMQZgAsy3N2SAYph7KUKQzJ61NrPOqAlupxj75x2tK6tQuDgXa6n7rGTWqjG2q0t7U2dLrq0PfeddPVNdW0xc_I02UdJTp3FpsTcjDWTcDTbT0m7_d3b6PH5Pnl4Wl0-5wYwfM-scYKkLLKLGhdlRlUWvI8CgWUVjPMrcksyyWzYwF5XhTCYpFxWZWpLdEiPyY3G99uUc3RGmx7rxvV-Xqu_Uo5Xau_nbaeqolbKi5ACA7R4GJr4N3HAkOvZm7h23izYqwsmBBM8kixDWW8C8Hj-HcDA_Udg9rEoGIM6jsGtY4z57un_U78_D0C6QYIsdVO0O-s_tf1C8MvlTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1197155183</pqid></control><display><type>article</type><title>Increased afterload induces pathological cardiac hypertrophy: a new in vitro model</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Hirt, Marc N. ; Sörensen, Nils A. ; Bartholdt, Lena M. ; Boeddinghaus, Jasper ; Schaaf, Sebastian ; Eder, Alexandra ; Vollert, Ingra ; Stöhr, Andrea ; Schulze, Thomas ; Witten, Anika ; Stoll, Monika ; Hansen, Arne ; Eschenhagen, Thomas</creator><creatorcontrib>Hirt, Marc N. ; Sörensen, Nils A. ; Bartholdt, Lena M. ; Boeddinghaus, Jasper ; Schaaf, Sebastian ; Eder, Alexandra ; Vollert, Ingra ; Stöhr, Andrea ; Schulze, Thomas ; Witten, Anika ; Stoll, Monika ; Hansen, Arne ; Eschenhagen, Thomas</creatorcontrib><description>Increased afterload results in ‘pathological’ cardiac hypertrophy, the most important risk factor for the development of heart failure. Current in vitro models fall short in deciphering the mechanisms of hypertrophy induced by afterload enhancement. The aim of this study was to develop an experimental model that allows investigating the impact of afterload enhancement (AE) on work-performing heart muscles in vitro. Fibrin-based engineered heart tissue (EHT) was cast between two hollow elastic silicone posts in a 24-well cell culture format. After 2 weeks, the posts were reinforced with metal braces, which markedly increased afterload of the spontaneously beating EHTs. Serum-free, triiodothyronine-, and hydrocortisone-supplemented medium conditions were established to prevent undefined serum effects. Control EHTs were handled identically without reinforcement. Endothelin-1 (ET-1)- or phenylephrine (PE)-stimulated EHTs served as positive control for hypertrophy. Cardiomyocytes in EHTs enlarged by 28.4 % under AE and to a similar extent by ET-1- or PE-stimulation (40.6 or 23.6 %), as determined by dystrophin staining. Cardiomyocyte hypertrophy was accompanied by activation of the fetal gene program, increased glucose consumption, and increased mRNA levels and extracellular deposition of collagen-1. Importantly, afterload-enhanced EHTs exhibited reduced contractile force and impaired diastolic relaxation directly after release of the metal braces. These deleterious effects of afterload enhancement were preventable by endothelin-A, but not endothelin-B receptor blockade. Sustained afterload enhancement of EHTs alone is sufficient to induce pathological cardiac remodeling with reduced contractile function and increased glucose consumption. The model will be useful to investigate novel therapeutic approaches in a simple and fast manner.</description><identifier>ISSN: 0300-8428</identifier><identifier>EISSN: 1435-1803</identifier><identifier>DOI: 10.1007/s00395-012-0307-z</identifier><identifier>PMID: 23099820</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animals ; Animals, Newborn ; Cardiology ; Cardiomegaly - etiology ; Cells, Cultured ; Endothelin Receptor Antagonists ; Fibrosis ; Gene Expression ; Glycolysis ; Medicine ; Medicine &amp; Public Health ; Models, Biological ; Myocytes, Cardiac - physiology ; Original Contribution ; Rats ; Rats, Inbred Lew ; Rats, Wistar ; Tissue Engineering</subject><ispartof>Basic research in cardiology, 2012-11, Vol.107 (6), p.307, Article 307</ispartof><rights>The Author(s) 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-dcd5088b4d0aab940ba83688b709da1e6dc4d1681df5066775de7438b92d9ede3</citedby><cites>FETCH-LOGICAL-c536t-dcd5088b4d0aab940ba83688b709da1e6dc4d1681df5066775de7438b92d9ede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00395-012-0307-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00395-012-0307-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23099820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirt, Marc N.</creatorcontrib><creatorcontrib>Sörensen, Nils A.</creatorcontrib><creatorcontrib>Bartholdt, Lena M.</creatorcontrib><creatorcontrib>Boeddinghaus, Jasper</creatorcontrib><creatorcontrib>Schaaf, Sebastian</creatorcontrib><creatorcontrib>Eder, Alexandra</creatorcontrib><creatorcontrib>Vollert, Ingra</creatorcontrib><creatorcontrib>Stöhr, Andrea</creatorcontrib><creatorcontrib>Schulze, Thomas</creatorcontrib><creatorcontrib>Witten, Anika</creatorcontrib><creatorcontrib>Stoll, Monika</creatorcontrib><creatorcontrib>Hansen, Arne</creatorcontrib><creatorcontrib>Eschenhagen, Thomas</creatorcontrib><title>Increased afterload induces pathological cardiac hypertrophy: a new in vitro model</title><title>Basic research in cardiology</title><addtitle>Basic Res Cardiol</addtitle><addtitle>Basic Res Cardiol</addtitle><description>Increased afterload results in ‘pathological’ cardiac hypertrophy, the most important risk factor for the development of heart failure. Current in vitro models fall short in deciphering the mechanisms of hypertrophy induced by afterload enhancement. The aim of this study was to develop an experimental model that allows investigating the impact of afterload enhancement (AE) on work-performing heart muscles in vitro. Fibrin-based engineered heart tissue (EHT) was cast between two hollow elastic silicone posts in a 24-well cell culture format. After 2 weeks, the posts were reinforced with metal braces, which markedly increased afterload of the spontaneously beating EHTs. Serum-free, triiodothyronine-, and hydrocortisone-supplemented medium conditions were established to prevent undefined serum effects. Control EHTs were handled identically without reinforcement. Endothelin-1 (ET-1)- or phenylephrine (PE)-stimulated EHTs served as positive control for hypertrophy. Cardiomyocytes in EHTs enlarged by 28.4 % under AE and to a similar extent by ET-1- or PE-stimulation (40.6 or 23.6 %), as determined by dystrophin staining. Cardiomyocyte hypertrophy was accompanied by activation of the fetal gene program, increased glucose consumption, and increased mRNA levels and extracellular deposition of collagen-1. Importantly, afterload-enhanced EHTs exhibited reduced contractile force and impaired diastolic relaxation directly after release of the metal braces. These deleterious effects of afterload enhancement were preventable by endothelin-A, but not endothelin-B receptor blockade. Sustained afterload enhancement of EHTs alone is sufficient to induce pathological cardiac remodeling with reduced contractile function and increased glucose consumption. The model will be useful to investigate novel therapeutic approaches in a simple and fast manner.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cardiology</subject><subject>Cardiomegaly - etiology</subject><subject>Cells, Cultured</subject><subject>Endothelin Receptor Antagonists</subject><subject>Fibrosis</subject><subject>Gene Expression</subject><subject>Glycolysis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Biological</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Original Contribution</subject><subject>Rats</subject><subject>Rats, Inbred Lew</subject><subject>Rats, Wistar</subject><subject>Tissue Engineering</subject><issn>0300-8428</issn><issn>1435-1803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1LAzEQhoMotn78AC8S8Lw62Wx2sx4EKX6BIIieQzaZtlu2mzXZVtpfb6RV6sHTwDvPvDPMS8gZg0sGUFwFAF6KBFiaAIciWe-RIcu4SJgEvk-GUYREZqkckKMQZgAsy3N2SAYph7KUKQzJ61NrPOqAlupxj75x2tK6tQuDgXa6n7rGTWqjG2q0t7U2dLrq0PfeddPVNdW0xc_I02UdJTp3FpsTcjDWTcDTbT0m7_d3b6PH5Pnl4Wl0-5wYwfM-scYKkLLKLGhdlRlUWvI8CgWUVjPMrcksyyWzYwF5XhTCYpFxWZWpLdEiPyY3G99uUc3RGmx7rxvV-Xqu_Uo5Xau_nbaeqolbKi5ACA7R4GJr4N3HAkOvZm7h23izYqwsmBBM8kixDWW8C8Hj-HcDA_Udg9rEoGIM6jsGtY4z57un_U78_D0C6QYIsdVO0O-s_tf1C8MvlTM</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Hirt, Marc N.</creator><creator>Sörensen, Nils A.</creator><creator>Bartholdt, Lena M.</creator><creator>Boeddinghaus, Jasper</creator><creator>Schaaf, Sebastian</creator><creator>Eder, Alexandra</creator><creator>Vollert, Ingra</creator><creator>Stöhr, Andrea</creator><creator>Schulze, Thomas</creator><creator>Witten, Anika</creator><creator>Stoll, Monika</creator><creator>Hansen, Arne</creator><creator>Eschenhagen, Thomas</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20121101</creationdate><title>Increased afterload induces pathological cardiac hypertrophy: a new in vitro model</title><author>Hirt, Marc N. ; Sörensen, Nils A. ; Bartholdt, Lena M. ; Boeddinghaus, Jasper ; Schaaf, Sebastian ; Eder, Alexandra ; Vollert, Ingra ; Stöhr, Andrea ; Schulze, Thomas ; Witten, Anika ; Stoll, Monika ; Hansen, Arne ; Eschenhagen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-dcd5088b4d0aab940ba83688b709da1e6dc4d1681df5066775de7438b92d9ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cardiology</topic><topic>Cardiomegaly - etiology</topic><topic>Cells, Cultured</topic><topic>Endothelin Receptor Antagonists</topic><topic>Fibrosis</topic><topic>Gene Expression</topic><topic>Glycolysis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Biological</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Original Contribution</topic><topic>Rats</topic><topic>Rats, Inbred Lew</topic><topic>Rats, Wistar</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirt, Marc N.</creatorcontrib><creatorcontrib>Sörensen, Nils A.</creatorcontrib><creatorcontrib>Bartholdt, Lena M.</creatorcontrib><creatorcontrib>Boeddinghaus, Jasper</creatorcontrib><creatorcontrib>Schaaf, Sebastian</creatorcontrib><creatorcontrib>Eder, Alexandra</creatorcontrib><creatorcontrib>Vollert, Ingra</creatorcontrib><creatorcontrib>Stöhr, Andrea</creatorcontrib><creatorcontrib>Schulze, Thomas</creatorcontrib><creatorcontrib>Witten, Anika</creatorcontrib><creatorcontrib>Stoll, Monika</creatorcontrib><creatorcontrib>Hansen, Arne</creatorcontrib><creatorcontrib>Eschenhagen, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Basic research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirt, Marc N.</au><au>Sörensen, Nils A.</au><au>Bartholdt, Lena M.</au><au>Boeddinghaus, Jasper</au><au>Schaaf, Sebastian</au><au>Eder, Alexandra</au><au>Vollert, Ingra</au><au>Stöhr, Andrea</au><au>Schulze, Thomas</au><au>Witten, Anika</au><au>Stoll, Monika</au><au>Hansen, Arne</au><au>Eschenhagen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased afterload induces pathological cardiac hypertrophy: a new in vitro model</atitle><jtitle>Basic research in cardiology</jtitle><stitle>Basic Res Cardiol</stitle><addtitle>Basic Res Cardiol</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>107</volume><issue>6</issue><spage>307</spage><pages>307-</pages><artnum>307</artnum><issn>0300-8428</issn><eissn>1435-1803</eissn><abstract>Increased afterload results in ‘pathological’ cardiac hypertrophy, the most important risk factor for the development of heart failure. Current in vitro models fall short in deciphering the mechanisms of hypertrophy induced by afterload enhancement. The aim of this study was to develop an experimental model that allows investigating the impact of afterload enhancement (AE) on work-performing heart muscles in vitro. Fibrin-based engineered heart tissue (EHT) was cast between two hollow elastic silicone posts in a 24-well cell culture format. After 2 weeks, the posts were reinforced with metal braces, which markedly increased afterload of the spontaneously beating EHTs. Serum-free, triiodothyronine-, and hydrocortisone-supplemented medium conditions were established to prevent undefined serum effects. Control EHTs were handled identically without reinforcement. Endothelin-1 (ET-1)- or phenylephrine (PE)-stimulated EHTs served as positive control for hypertrophy. Cardiomyocytes in EHTs enlarged by 28.4 % under AE and to a similar extent by ET-1- or PE-stimulation (40.6 or 23.6 %), as determined by dystrophin staining. Cardiomyocyte hypertrophy was accompanied by activation of the fetal gene program, increased glucose consumption, and increased mRNA levels and extracellular deposition of collagen-1. Importantly, afterload-enhanced EHTs exhibited reduced contractile force and impaired diastolic relaxation directly after release of the metal braces. These deleterious effects of afterload enhancement were preventable by endothelin-A, but not endothelin-B receptor blockade. Sustained afterload enhancement of EHTs alone is sufficient to induce pathological cardiac remodeling with reduced contractile function and increased glucose consumption. The model will be useful to investigate novel therapeutic approaches in a simple and fast manner.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23099820</pmid><doi>10.1007/s00395-012-0307-z</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0300-8428
ispartof Basic research in cardiology, 2012-11, Vol.107 (6), p.307, Article 307
issn 0300-8428
1435-1803
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3505530
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Animals, Newborn
Cardiology
Cardiomegaly - etiology
Cells, Cultured
Endothelin Receptor Antagonists
Fibrosis
Gene Expression
Glycolysis
Medicine
Medicine & Public Health
Models, Biological
Myocytes, Cardiac - physiology
Original Contribution
Rats
Rats, Inbred Lew
Rats, Wistar
Tissue Engineering
title Increased afterload induces pathological cardiac hypertrophy: a new in vitro model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20afterload%20induces%20pathological%20cardiac%20hypertrophy:%20a%20new%20in%20vitro%20model&rft.jtitle=Basic%20research%20in%20cardiology&rft.au=Hirt,%20Marc%20N.&rft.date=2012-11-01&rft.volume=107&rft.issue=6&rft.spage=307&rft.pages=307-&rft.artnum=307&rft.issn=0300-8428&rft.eissn=1435-1803&rft_id=info:doi/10.1007/s00395-012-0307-z&rft_dat=%3Cproquest_pubme%3E2823879491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1197155183&rft_id=info:pmid/23099820&rfr_iscdi=true